Social Adaptive Landscape

An adaptive landscape represents how successful any given solution to a particular context is. Those that are more functional are higher up on the landscape, receiving a higher payoff, and those that are similar are placed in proximity to each other

A social adaptive landscape is a model to social systems that tries to map out the entire environment within which individuals, social groups or societies are interacting and adapting to each other’s behavior as they try to find optimal solutions to a given social context. The adaptive landscape can be used as a formal model for representing whole complex social systems consisting of many interacting agents both on the micro level of individuals and on the macro level of interacting organizations. The degree of complexity to an adaptive landscape is a key parameter, when we turn it up we go from a linear environment with a single solution, to multiple solutions, to a dancing landscape, to an evolving topology representing an open system. As the landscape changes likewise the agent’s strategies need to change fundamentally in response to this change in context, as they go from simple algorithms to more complex forms of adaptation and evolution.

Adaptation

The idea of adaptation is central to this whole modeling paradigm, we can define adaptation as the capacity for a system to change its state in response to some change within its environment, the system does this in order to optimize its state within that environment according to some metric. So the agent has some value system, meaning it can define a set of states and ascribe some value to them, with some of those states being better and some being worse. We might be talking about a trader in a financial system trying to make more money, a government negotiating a trade agreement, a politician trying to get elected or criminals trying not to get arrested, all of these are examples of agents that have some value system, they are operating within some environment and they are searching for an optimal solution according to that set of criteria. These agents are operating within some environment and that environment is changing periodically, and the agents have to adapt by finding new responses to these changes.  As such we can understand the process of adaptation as a search over many different possible solutions in order to generate the most effective one given the environmental condition.

Adaptive Landscape

The most coherent and robust formal model we have for understanding this process of adaptation as a search is what is called a fitness or adaptive landscape, it is a very solid formal mathematical model we can use to describe complex adaptive systems. In a recent paper summarizing the literature on the fitness landscape model in the social sciences they describe the model as such: “At first sight, fitness landscapes provide a visual representation of how an agent, of any kind, relates to its environment, how its position is conditional because of the mutual interaction with other agents, and which possible routes towards improved fitness there are. The allure of fitness landscapes is first and foremost that it represents a complex story about adaptation and fitness in one coherent image that helps to summarize the many aspects of those processes in an accessible way.”

So there are a number of parameters that our adaptive landscape model needs to capture, firstly we need to define a parameter for how good, or fit any solution is, every fitness landscape has to have a well-defined metric telling us which way is up and which way is down, the higher up this parameter the more efficient the solution is and thus the better the payoff for the agent. Next, we need two more parameters in order to create a 2-dimensional space within which to put our different solution types, those that are similar will be placed in proximity to each other within this space. So as an example we might be using this model to represent a military campaign, if we had two solutions based around predominantly using air strikes we would put them in proximity, while other different strategies using ground forces would be clustered in a different location.

So when we put these three parameters together we have a three-dimensional space where the horizontal axis tells us the type of solution we are using and the vertical axis is telling us how effective that solution or state is. Now for any application of this model the different locations on the horizontal axes will have a different payoff ascribed to them, some will be better than others, thus each one will have a certain elevation based upon it efficiency. When we map out all of these elevations we will get a landscape inside of our model, representing the solution space to that particular environment. Agents are now placed into this landscape, these agents might be countries within the international political environment, their elevation representing their capacity to influence the global political system and those with similar political regimes and ideologies would be in proximity to each other. Or as another more concrete example, we might be modeling the different drug cartels within Mexico, where their control over territory and resources would be their elevation within the landscape.

Agents are then trying to reach higher elevations within this landscape, but they typically do not have a global vision of the entire landscape, they do not know if they are on a globally optimal solution or just on a local one, we do not know if we break up with our partner whether we will find a more suitable one in the future, we don’t know if we overthrow the current political regime whether the next one will be any better etc. Thus at any given time agents are faced with two different option of either exploiting their current position or investing resources in exploring for better options.

This adaptive landscape represents the different types of environments that agents are operating within and these different environments can span from the very simple to the very complex, on the simple end of the spectrum we are dealing with a context that is static in nature and with limited interdependencies. On the complex end of the spectrum, we are dealing with environments that are dynamic in nature, consisting of many interdependent interacting parts.  We will now describe in more detail what this means be going over four of the qualitatively different types of adaptive landscapes starting with the simple and going to the complex.

Types of Landscapes

The success of any given strategy by an agent is always contingent upon the type of social context that they find themselves within, which may in turn change over time

The most simple environments are static in nature and consist of the least amount of interacting variables, as an example we might think about an absolute monarch or absolute dictatorship where all social, economic and cultural institutions are controlled and held constant through the political hierarchy, within such an environment everything is in relation to one political institution, simply succeeding within that single organization can achieve global success. Or as another example, we might think about some homogeneous cultural system that defines clearly what is considered right and wrong and from this the one correct way to live one’s life. These are examples of linear socio-cultural environments that would give the landscape a single dominant peak, one optimal solution that is well defined, and because of this, the agent needs only to follow some linear optimization algorithm.

If we now increase the complexity by turning up the number of equally viable solutions we will get a landscape that has many different peaks and agents now have to invest a certain amount of time searching for the optimal position. As an example of this we might think about a young person having completed high school choosing which university to go to, they will be trying to optimize for a number of different variables, cost of tuition, location, facilities, college ranking etc. and thus there will be a number of different viable solutions, giving the landscape a number of different peaks, a roughed landscape. But in this situation the variables are not changing over time thus the student could invest quite a bit of time and resources in researching all of the factors involved to find whatever they consider the optimal. Although this environment may represent complicated problems in that there are a number of interacting variables that require a significant amount of computation, it is still a relatively simple environment.

If we now allow for the different interacting variables to adapt and change over time we now have a complex environment. We now have a landscape where actors are acting and reacting to each other’s behavior constantly adapting and it is out of this interdependence and adaptation that we get a landscape where the peaks and valleys are moving up and down over time. An example of this might be the current international political environment as we move into an increasingly multipolar world, with the rise of China and the other emerging economies we are now no longer in an international environment dominated by the homogeneous Western ideology of the Bretton Woods institutions, but increasingly have many more actors, both public and private, each with their own strategies and interest that are constantly acting and reacting to each other. And this means the end target is constantly changing any solution that may be effective now, may cease to be effective when others adapt to it which once again alters the playoffs on the landscape as it moves up and down over time

Open Environments

Lastly, this whole complex adaptive social system of agents acting and reacting is receiving some set of input values from external sources, whether this is the natural environment or the technology infrastructure to that society. A major change in these input values can cause the whole landscape to transform, in such circumstances, we are no longer talking about the agents acting and reacting to each other, but instead, we are talking about the whole topology to the landscape transforming. This is similar to a paradigm shift within science or culture where the whole landscape gets changed, we can think about the paradigm shift in our culture as we moved into the modern era, everything got re-contextualized, through a scientific and materialistic context. With this cultural paradigm shift virtually every single social and cultural institution within the entire landscape had to reinvent itself within this new context, education, governance, work, etc everything got redefined and those that weren’t have slowly lost relevance, this is a long-term systemic change where we are no longer talking about adaptation but instead evolution.

To take a more contemporary example we could think about the rise of machine learning and mass automation. Machine learning in many different areas is making the basic processing of information a commodity, we as human beings no longer have a monopoly on basic knowledge and information processing activities, which is a paradigm shift, we have for millennia had an uncontested monopoly on these activities and through it control over our environment and all other creatures, but this is rapidly changing. Within this context of a systemic transformation, we are no longer competing with each other to maintain relevance, but now the actual whole context is changing and the whole system of our society has to evolve in order to maintain relevance within this new environment.

Adaptive Strategies

Businessman standing on balcony looking at the city. Strategies may be simple algorithms or more complex in nature

From this, we should see that different environments require different types of adaptation. Within the first simpler environment agents only need a relatively simple linear form of adaptation which is really an optimization algorithm. The second environment is again algorithmic in nature but it requires a greater investment of computation as it is no longer a simple trade-off between two variables but now a number of different variables interacting. In neither of these first two environments does the system really have to adapt, it simply has to make an initial investment of resources exploring the environment before converging to some optimal position and can then remain there, because the landscape is not changing,

the process of exploration and adaptation is transient in nature, we only have to do it for a period of time before the system can settle into some basin of attraction. The aim of the game here is to find the best solution and then just stay using it, you don’t really have to adapt, this is like becoming the biggest fish in the pond so that no one can affect you or the single superpower in a monopolar political environment, so that you have significant enough resources that you don’t really have to adapt to what others are doing.

When the landscape is changing in response to everyone’s actions this actually requires adaptation, you have to stay continuously responding to what other actors are doing, this is like being in a multipolar international political environment no one is big enough just to ignore what others are doing, there are enough major players that any one of them changing their state will affect the entire landscape to a greater or lesser degree. When the landscape is subject to systemic change then agents must be capable of changing their entire functionality in order to be able to intercept and transform whatever new resource may be available. This requires them to be able to go through the process of evolution, which is simply a more long-term and fundamental form of adaptation. In order for agents to change their entire functionality and evolve this requires the maintenance of a stock of redundant diversity within the system in order to be able to foster, grow and develop the new long-term solution in response to major long-term changes.

Changing Strategies

Strategies that work well in one environment may well fail in another and this if often a limitation to long-term sustained development. Where an agent adopts a strategy that works well in a simple environment and enables them to develop into a more complex environment, wherein they stay applying their previous strategy which works to prevent them from developing a more appropriate one for the new context. Here we can identify that success often creates a positive feedback loop, such as we have previously discussed with the phenomena of irrational exuberance, where success makes the agent overconfident in their strategy and drives them forward into a more complex environment where their strategy may be inappropriate but the positive feedback loop of irrational exuberance, limits their capacity to recognize that and change accordingly, giving us unsustainable development and this might be cited as a form of self-organized criticality.

As Albert Einstein would say; “We can’t solve problems by using the same kind of thinking we used when we created them.” As an example, we might think about how our industrial technologies and solutions that were developed when we had a much lower ecological impact, have taken us into a more complex environment where we are for the first time significantly altering earth’s core regulatory systems, such as the climate and polar ice caps. Solving problems within this more complex environment requires a form of collaboration that our industrial systems of organization such as the nation state, that previously may have worked well, are not well designed for. The point to take away here is that strategy is context dependent, complexity is a fundamental parameter to a system when we turn it up or down we can expect the strategy to change fundamentally, requiring greater or less capacity for adaptation.

2017-07-09T13:25:51+00:00