

Gerhard Fischer 1 AI in Structural Engineering

Complex Systems: Why Do They Need to Evolve
and

How Can Evolution Be Supported

Gerhard Fischer

University of Colorado, Center for LifeLong Learning & Design (L3D)
Department of Computer Science, Campus Box 430

Boulder, CO 80309-0430, USA
 email: gerhard@cs.colorado.edu

Abstract. We live in a world characterized by evolution—that is, by
ongoing processes of development, formation, and growth in both
natural and human-created systems. Biology tells us that complex,
natural systems are not created all at once but must instead evolve over
time. We are becoming increasingly aware that evolutionary processes
are ubiquitous and critical for social, educational, and technological
innovations as well.

The driving forces behind the evolution of these systems is their use
by communities of practice in solving real-world problems as well as the
changing nature of the world, specifically as it relates to technology. The
seeding, evolutionary growth, and reseeding model is a process
description of how this happens. By integrating working and learning in
communities of practice, we have created organizational memories that
include mechanisms to capture and represent task specifications, work
artifacts, and group communications. These memories facilitate
organizational learning by supporting the evolution, reorganization, and
sustainability of information repositories and by providing mechanisms
for access to and delivery of knowledge relevant to current tasks.

Our research focuses specifically on the following claims about
design environments embedded within dynamic human organizations:
(1) they must evolve because they cannot be completely designed prior
to use; (2) they must evolve to some extent at the hands of the users; (3)
they must be designed for evolution; and (4) to support this approach
with World-Wide Web technology, the Web has to be more than a
broadcast medium; it has to support collaborative design.

Keywords: design; evolution; domain-oriented design environments; seeding,
evolutionary growth, and reseeding model (SER model); open versus closed systems

Acknowledgments. The author would like to thank members of the Center for
LifeLong Learning & Design at the University of Colorado who have made major
contributions to the conceptual framework and systems described in this paper. Jim
Ambach and Ernesto Arias contributed to the conceptual framework and scenario
development. The research was supported by (1) the National Science Foundation,
Grants REC-9631396 and IRI-9711951; (2) NYNEX Science and Technology Center,
White Plains; (3) Software Research Associates, Tokyo, Japan; (4) PFU, Tokyo, Japan;
and (5) Daimler-Benz Research, Ulm, Germany.

Gerhard Fischer 2 AI in Structural Engineering

1 Introduction

1.1 Necessity for Evolution

The basic assumption that complete and correct requirements can be obtained
at some point of time is theoretically and empirically wrong. Many research
efforts do not take into account the growing evidence that system
requirements are not so much analytically specified as they are collaboratively
evolved through an iterative process of consultation between end users and
software developers [23]. A consequence of the "thin spread of application
knowledge" [10] is that specification errors often occur when designers do not
have sufficient application domain knowledge to interpret the customer's
intentions from the requirement statements.

Design methodologists (e.g., [43,44]) demonstrate with their work that the
design of complex systems requires the integration of problem framing and
problem solving and they argue convincingly that (1) one cannot gather
information meaningfully unless one has understood the problem, but one
cannot understand the problem without information about it; and (2)
professional practice has at least as much to do with defining a problem as
with solving a problem. New requirements emerge during development
because they cannot be identified until portions of the system have been
designed and implemented. The conceptual structures underlying complex
software systems are too complicated to be specified accurately in advance
and too complex to be built faultlessly [7]. Specification and implementation
have to co-evolve [47] requiring the owners of the problems [15] to be present
in the development. While evolution is no panacea and creates its own
problems, there are strong reasons to increase the efforts and the costs to
include mechanisms for evolution (such as end-user modifiability,
tailorability, adaptability, design rationale, making software “soft”) into the
original design of complex systems. Experience has shown [8,25] that the costs
saved in the initial development of system by ignoring evolution will be spent
several times over during the use of a system.

1.2 Theory about Evolution of Complex Systems

Evolution of complex systems is a ubiquitous phenomenon. Many researchers
have addressed the evolutionary character of successful complex systems and
of scientific endeavor. Laszlo [28] stresses that a new paradigm is emerging in
many fields, leading to a replacement of earlier ideas that were based on
mechanistic determinism toward new models of change, indeterminance and
evolution. Popper [36] reminds us that knowledge should be open to critical
examination and that the advance of knowledge consists in the modification
of earlier knowledge. Dawkins [11] demonstrates that big-step reductionism
cannot work as an explanation of mechanism; we can't explain a complex
thing as originating in a single step, but complex things evolve (implying that
models from biology may be more relevant to future software systems than
models from mathematics).

Gerhard Fischer 3 AI in Structural Engineering

1.3 The Evolution of Complex Software Systems

Evolution is especially essential in software systems. The assumption of
complete requirements at any point in time is detrimental to the development
of successful (i.e., useful and usable) software systems. Brooks [7] argues that
successful software gets changed because it offers the possibility to evolve. Lee
[29] describes many convincing examples (including the failure of the Aegis
system in the Persian Gulf) that design approaches based on the assumption
of complete and correct requirements do not correspond to the realities of this
world. Curtis and colleagues [10] identify in a large-scale empirical
investigation that fluctuating and conflicting requirements are critical
bottlenecks in software production and quality. The Computer Science and
Technology Board [8] provides empirical data that 40-60 percent of the
lifecycle costs of a complex system is absorbed by maintenance and 75 percent
of the total maintenance efforts are enhancements. Much of this cost is due to
the fact that a considerable amount of essential information (such as design
rationale [18,31]) is lost during development and must be reconstructed by the
designers who maintain and evolve the system. In light of these data,
development and maintenance have to merge into cycles of an evolutionary
process making capturing of design rationale a necessity rather than a luxury.

1.4 Claims about Evolution

Software design needs to be understood as an evolutionary process where
system requirements and functionality are determined through an iterative
process of collaboration among multiple stakeholders (including developers
and users). Requirements cannot be completely specified before system
development occurs. Our previous study of design processes support the
following claims:
• Software systems must evolve; they cannot be completely designed prior to use.

Design is a process that intertwines problem solving and problem framing
[43]. Software users and designers will not fully determine a system’s
desired functionality until that system is put to use. Process models that
describe the different phases of the software life cycle need to take
advantage of this fact.

• Software systems must evolve at the hands of the users. End users experience a
system’s deficiencies; subsequently, they have to play an important role in
driving its evolution. Software systems need to contain mechanisms that
allow end-user modification of system functionality.

• Software systems must be designed for evolution. Through our previous
research in software design, we have discovered that systems need to be
designed a priori for evolution. Software architectures need to be developed
for software that is designed to evolve.

Gerhard Fischer 4 AI in Structural Engineering

2 Domain-Oriented Design Environments (DODEs)

Domain-oriented design environments (DODEs) [14] are software systems
that support design activities within a particular domain such as the design of
kitchens, voice dialog systems, and computer networks. DODEs are a
particularly good example of complex software systems that need to evolve.
Design within a particular domain typically involves several stakeholders
whose knowledge can be elicited only within the context of a particular
design problem. Different stakeholders include the developers of a DODE
(environment developers), the end users of a DODE (domain designers), and
the people for whom the design is being created (clients). To effectively
support design activities, DODEs need to increase communication between
the different stakeholders and anticipate and encourage evolution at the
hands of domain designers.

Software systems (such as DODEs) model parts of our world (e.g., the
physical computer networks consisting of computers, networks, etc.). Our
world evolves in numerous dimensions as new artifacts appear, new
knowledge is discovered, and new ways of doing business are developed.
There are fundamental reasons why systems cannot be done “right” at the
beginning. Successful software systems need to evolve.

2.1 Design Environments: Limited Scope, Better Support

Not all problems in the development of any complex software can be solved
by one (and always the same) approach. The more specifically we address a
certain kind of complex software, the more likely will we be able to find
effective support for its evolutionary development. Henderson and Kyng [25]
demonstrate that enhancements extending through the lifetime of a complex
system are critical. Norman [34] shows that design and evolution have many
things in common. Simon [45] provides convincing evidence that complex
systems evolve faster if they can build on stable subsystems.

In our work on DODEs, we build on object-oriented techniques, but
transcend pure, basic object-orientation by integrating and embedding object
abstractions in the specific context of design in an evolving domain. Like design
patterns [1,21] and application frameworks [30], DODEs provide a
meaningful context for evolution [13]. DODEs are even more powerful than
the other above-mentioned contextualizations, as they take the domain into
account.

2.2 Domain Orientation: Situated Breakdowns and Design Rationale

Domain-oriented systems are rooted in the context of use in a domain. While
the DODE approach itself is generic, each of its applications is a particular
domain-oriented system. Our emphasis on domain-oriented design
environments acknowledges the importance of situated and contextualized
communication and design rationale as the basis for effective evolutionary
design. Polanyi [35] analyzes the observation that human knowledge is tacit
(i.e., we know more than we can say) and that some of it will be activated

Gerhard Fischer 5 AI in Structural Engineering

only in actual problem situations. In early knowledge-based system building
efforts, there was a distinct knowledge acquisition phase that was assumed to
lead to complete requirements—contrary to our assumption of the seeding,
evolutionary growth, reseeding (SER) model (presented later in the paper).
The notion of a “seed” in the SER model emphasizes our interpretation of the
initial system as a catalyst for evolution—evolution that is in turn supported
by the environment itself.

2.3 End-User Modification and Programming for Communities:
Evolution at the Hands of Users

Because end users experience breakdowns and insufficiencies of a design
environment in their work, they should be able to report, react to, and resolve
those problems. Mechanisms for end-user modification and programming
are, therefore, a cornerstone of evolvable systems. At the core of our
approach to evolutionary design lies the ability of end users (in our case,
domain designers) to make significant changes to system functionality, and to
share those modifications within a community of designers. It is their
perception that should determine what is considered urgent to change, not
the risks determined by developers. The types of changes that must occur
during the evolutionary growth of a system go beyond the setting of
predefined parameters or preferences and include the ability to alter system
behavior in non-trivial ways. Winograd [49] argues why design environments
are needed to make end-user programming feasible. We don’t assume that all
designers will be willing or interested in making system changes, but drawing
upon the work of Nardi [33] we do know that within local communities of
software use there often exist local developers and power users who are
interested in and capable of performing these tasks.

3 Evolutionary Design at Work: A Scenario

The following scenario illustrates how a design environment can affect the
exemplary domain of computer network design. The scenario emphasizes the
importance of end-user driven evolution. The system described, NetDE (see Fig.
1 and Fig. 2), is a DODE for the domain of computer network design. NetDE
incorporates several principles including:

• Domain-oriented components that provide domain designers (in this
case, computer network designers) the capability to easily create design
artifacts; these domain designers are the end-users of NetDE.

• Features that allow the specification of design constraints and goals so
that the system understands more about particular design situations and
gives guidance and suggestions for designers relevant to those
situations.

• Mechanisms that support the capture of design rationale and
argumentation embedded within design artifacts so that they can best
serve the design task.

Gerhard Fischer 6 AI in Structural Engineering

• Mechanisms that support end-user modifiability so that the network
designers experiencing deficiencies of NetDE can drive the evolution of
the system.

• Features that increase communication between the system stakeholders
(i.e., designers of NetDE and the network designers using NetDE).

• The integration of communities of practice within the evolution of
NetDE.

This scenario involves two network designers (D1, D2) at the University of
Colorado who have been asked to design a new network for clients within the
Publications Group in the dean’s office at the College of Engineering.

3.1 Evolution of Design Artifacts: Designing a New Network

D1's clients are interested in networking ten newly purchased Macintosh
Power PCs and a laser printer. Through a combination of email discussions
and meetings, D1 learns that the clients want to be able to share the printer,
swap files easily, and send each other email. D1 raises the issue of connecting
to the Internet, and was told that the clients would be interested at some
point, but not for the time being. It was also made clear that the clients had
spent most of their budget on the computer hardware, and did not have much
left over for sophisticated network services and tools.

From our previous work in network design, we know that design
specification and rationale comes from a number of stakeholders, including
network designers and clients, and is captured in different media including
email and notes. To be most effective, this rationale needs to be stored in a
way that allows access to it from the relevant places within a design.

D1 invokes the NetDE system. A World-Wide Web (WWW) Browser
appears on the desktop presenting a drawing of the College of Engineering.
Every network and subnet in the College of Engineering can be accessed by
navigating through different parts of the drawing. By selecting the “New
Design” option, D1 is presented an empty NetDE page that he names
“Publications OT 8-6” after the office where the clients are located. The new
page becomes a repository for all of the background information and rationale
that D1 has regarding the new network. This is achieved by sending all email
and text files that D1 has to the (automatically created) email address
“PublicationsOT8-6.” NetDE insures that the WWW page immediately
updates itself to show links to the received mails and files (Fig. 1, (1)).

Selecting the “Launch Construction Component” option opens a palette of
network objects (Fig. 1, (2)) as well as a worksheet (3). D1 starts by specifying
certain design constraints to the system (4). Immediately the Catalog (5)
displays a selection of existing designs that have constraints similar to those
specified by D1. Selecting one of the designs represented in the Catalog moves
that design into the worksheet where D1 can modify it. D1 changes the design
to reflect the specific needs of the Publications Group. NetDE is accessible
through the World-Wide Web, so that other network designers (D2...Dn) can
use it, also. The existing designs may be contributions from other designers.

Gerhard Fischer 7 AI in Structural Engineering

WWW access is crucial for maintaining a distributed community of
practice. The Behavior Exchange [39] is addressing these needs. The capture
of design rationale and argumentation can occur through the use of a group
memory. The GIMMe system [19] explores the creation and maintenance of a
group memory accessible through the WWW.

(1)

(2)(3)

(4)

(5)

Fig. 1. NetDE in Use

Finally, NetDE provides a domain specific construction mechanism (the
palette and the worksheet), and allows the specification of design constraints
and goals. Using additional specification mechanisms, D1 describes how the
network will be used, and what kinds of networking services are desired. This
is the first time D1 has networked Macs, so he takes advantage of the NetDE
critiquing feature, which will evaluate his design and compare it to the
established design constraints. During evaluation, NetDE suggests the use of
the EtherTalk network protocol, and the PowerTalk email capabilities that
come standard with the Macs. D1 agrees with this assessment because they
limit the cost of the network. He finishes creating his design.

Integration of specification, construction, catalog, and argumentation
components is the characteristic strength of a DODE such as NetDE. These
components and their interaction are critical to the "evolvability" of the
system. The process D1 and D2 follow (below) is an instantiation of our
seeding-evolutionary growth-reseeding process model.

Gerhard Fischer 8 AI in Structural Engineering

3.2 Evolution of a Design Environment: NetDE

Several months pass, and Publications is interested in changing its network.
D1 is not available, so D2 is to design the new changes. D2 receives email from
Publications indicating that their network needs have changed. They want to
start publishing WWW pages and will need Internet access. They will also be
using a Silicon Graphics Indy computer. They have received a substantial
budget increase for their network.

(1)

(2)

(3)

(4)

Fig. 2. The Network Evolves

First, D2 accesses the NetDE page that describes the Publications network.
She quickly reviews the current design and rationale to learn what has
already occurred. She updates the design specification to reflect the fact that
cost is no longer as important, and that speed has become more important.
Then, she searches the NetDE palette to see if it has an icon representing the
Indy. She does not find one, and realizes that it must be added. After
reviewing the specs for the Indy from the Silicon Graphics Web Page, D2
creates a new palette element for the Indy (Fig. 2, (1)), and then defines its
characteristics using some of NetDE’s end user modifiability features (Fig. 2,
(2)). According to the company’s specs, the Indy has built-in networking
capabilities, and understands the TCP/IP network protocol. D2 enters this
information, and the new icon appears in the palette.

Since breakdowns are experienced by end users, they need to be able to
evolve the system’s functionality. This calls for the development of
specialized mechanisms that allow end users to alter system functionality
without having to be computer programmers. In order for NetDE to take full

Gerhard Fischer 9 AI in Structural Engineering

advantage of new objects added by the network designer, it must provide
facilities that define not just the look of the new object, but also its behavior.

D2 adds the Indy to the design, and NetDE indicates (by displaying
different colored wires) that the two types of machines (Macs and the Indy)
are using different network protocols. D2 knows that Macs can understand
TCP/IP protocol, so she changes the network’s protocol to TCP/IP. After
invoking NetDE’s critiquing mechanism, D2 receives a critiquing message
indicating that the use of TCP/IP violates the easy file-sharing design
constraint (Fig. 2, (3)). After reading through some of the argumentation (Fig.
2, (4)), D2 learns that although file sharing is possible in TCP/IP with the
Macs, it is not as easy as when they are using EtherTalk. D2 decides that this is
not a constraint she would like to break, and decides to ask some other
network designers if there is a way to get the Indy to understand EtherTalk.
D2 learns that there is software the Indy can run to translate protocols, and she
adds an annotation to the Indy object to reflect this.

A critiquing component is important in linking design rationale and
argumentation to the designed artifact as well as for pointing out potential
breakdowns to the designer. Very drastic changes (like the introduction of
wireless communication) will not be covered by the end-user modification
mechanisms. In those cases, the ability to describe system changes to
environment developers is critical for maintaining communication among
different stakeholders of the system. When unexpected modification needs
occur, users must be able to articulate their needs and notify developers. The
information provided to the environment developer will be useful to describe
how the system is being used and what sort of issues the system is not
addressing, leading to subsequent radical evolution of the system.

4 Computer-Supported Evolutionary Design

The above scenario illustrates both (1) the DODE itself evolves and (2) how
artifacts created with the DODE evolve at the hands of end-users (such as
network designers). The ability of a DODE to co-evolve with the artifacts
created within it makes the DODE architecture the ideal candidate for
creating an evolvable application family. In the following, we describe the
SER process model as a systematic way to structure evolution [20].

The domain orientation of a design environment enriches (1) the amount of
support that a knowledge-based system can provide, and (2) the shared
understanding among stakeholders. Design knowledge includes domain
concepts, argumentation, case-based catalogs, and critiquing rules. The appeal
of the DODE approach lies in its compatibility with an emerging
methodology for design [9,12], views of the future as articulated by practicing
software engineering experts [8], reflections about the myth of automatic
programming [42], findings of empirical studies [10], and the integration of
many recent efforts to tackle specific issues in software design (e.g., recording
design rationale [18], supporting case-based reasoning [38], creating artifact
memories [48], and so forth).

Gerhard Fischer 10 AI in Structural Engineering

4.1 Seeding, Evolutionary Growth, Reseeding—The SER Process Model
for DODEs

Because design in real world situations deals with complex, unique,
uncertain, conflicted, and unstable situations of practice, design knowledge as
embedded in DODEs will never be complete because design knowledge is
tacit (i.e., competent practitioners know more than they can say) [35], and
additional knowledge is triggered and activated by actual use situations
leading to breakdowns [16]. Because these breakdowns are experienced by the
users and not by the developers, computational mechanisms that supporting
end-user modifiability are required as an intrinsic part of a DODE.

Three intertwined levels can be distinguished whose interactions form the
essence of the SER model:

• On the conceptual framework level, the multifaceted, domain-independent
architecture constitutes a framework for building evolvable complex
software systems.

• When this architecture is instantiated in a domain (e.g., network design),
a domain-oriented design environment (representing an application
family) is created on the domain level. An instantiation in the network
domain is NetDE.

• Individual artifacts in the domain are developed by exploiting the
information contained in the generic DODE (in the scenario this is
represented by the network developed for the Publications Group).

Fig. 3 illustrates the interplay of those three layers. Darker gray indicates
knowledge domains close to the computer, whereas white emphasizes
closeness to the design work in a domain. The figure illustrates the role of
different professional groups in the evolutionary design: the environment
developer (close to the computer) provides the domain-independent
framework, and instantiates it into a DODE in collaboration with the help of
the domain designers (knowledgeable domain workers who use the
environment to design artifacts; in the scenario, D1 is a domain designer).
Domain designers are the "end users" of a design environment. The artifact is
eventually delivered to the client (e.g., the Publications Group in the
scenario).

Breakdowns occur when domain designers cannot carry out the design
work with the existing DODE. Extensions and criticism drive the evolution on
all three levels: Domain designers directly modify the artifacts when they
build them (artifact evolution), they feed their modifications back into the
environment (domain evolution), and—during a reseeding phase—even the
architecture may be revised (conceptual framework evolution). In Fig. 3, the
little building blocks represent knowledge and domain elements in any of the
components of the multifaceted architecture (i.e., the Indy, critics about
network protocols, etc.).

The evolution of complex systems in the context of this process model
(more detail can be found in [20]) can be characterized as follows:

Gerhard Fischer 11 AI in Structural Engineering

Seeding. A seed will be created through a participatory design process
between environment developers and domain designers. It will evolve in
response to its use in new network design projects because requirements
fluctuate, change is ubiquitous, and design knowledge is tacit. Postulating the
objective of a seed (rather then a complete domain model or a complete
knowledge base) sets our approach apart from other approaches in software
engineering and artificial intelligence and emphasizes evolution as the central
design concept.

Evolutionary growth. Network experts use the seeded environment to
undertake specific projects for clients (such as the Publication Group in the
scenario). During these design efforts, new requirements may surface (e.g.,
the desire to access the Internet), new components may come into existence
(e.g., the Indy) and additional design knowledge not contained in the seed
may be articulated (e.g., that EtherTalk supports both AppleTalk and TCP/IP
protocols). During the evolutionary growth phase, the environment
developers are not present, thus making end-user modification a necessity
rather than a luxury (at least, as argued before, for small-scale evolutionary
changes). Visual AgenTalk (VAT) addresses this problem, building on our
experience with end-user modifiability and end-user programming [13,17].

Reseeding. In a deliberate effort to revise and coordinate information and
functionality, the environment developers are brought back in to collaborate
with domain designers to organize, formalize, and generalize knowledge
added during the evolutionary growth phases. Organizational concerns [24]
play a crucial role in this phase. For example, decisions have to be made as to
which of the extensions created in the context of specific design projects
should be incorporated in future versions of the generic design environment.

.

Domain
Designer
Environment
Developer

Client

Legend

build on
lower level

modify
lower level

Evolutionary Growth
ReSeeding

Artifact A

Artifact B

Multifaceted
Architecture

DODE

Artifact

ArgumentationCatalog

Specification

Argume nta tion
Illustrator

Catalog
Explorer

Catalog
Explorer

ArgumentationCatalog

ConstructionSpecification

Argume nta tion
Illustrator

Catalog
Explorer

Catalog
Explorer

Co nst ruction
Analyzer

Specification
Matcher

Specification
Matcher

Seeding

le
ve

ls

time

Fig. 3. The SER Model: A process model for the development and evolution of
DODES

Gerhard Fischer 12 AI in Structural Engineering

Drastic and large-scale evolutionary changes occur during the reseeding
phase.

5 Systems-Building Efforts

The preceding sections have identified important issues that need to be
addressed to support evolutionary system development: design rationale,
design-in-use, end-user modifiability, and collaboration support for a
community of practice. Following prototypical systems are briefly introduced
that address those issues.

5.1 Group Interactive Memory Manager (GIMMe)

The research objective behind GIMMe [19] is to support the communication
between different stakeholders involved in the development process and to
capture and structure this communication in order to make it immediately
available as design rationale [32].

Description. GIMMe is a web-based group memory system. It helps
communities of practice (e.g., project teams, interest groups) to capture, store,
organize, share, and retrieve electronic mail conversations. Mail sent to a
specific group alias is automatically added to an information space and
categorized according to its subject line. Group members can access the
information space via the Internet. It supports three retrieval mechanisms to
this information space: (1) browsing in reverse chronological order, (2)
browsing according to project-specific categories, and (3) retrieval by free-
form text queries (using the Latent Semantic Indexing algorithm [27]. GIMMe
supports users in creating, rearranging, or deleting categories and the mail
belonging to them (a more detailed description of GIMMe can be found at
http://www.cs.colorado.edu/~stefanie). It will allow groups to create and
negotiate domain conventions and concepts over time, as well as to evolve
categories that reflect the structure and vocabulary of the application domain.

How does GIMMe support evolution? In order for the users to evolve a
system they have to be able to understand the design decisions that lead to
the current system. GIMMe addresses the problem of how to capture this
important information, structure it for later reuse, and make it available to the
users. GIMMe is an effort demonstrating that design rationale emerges as a
by-product of normal work. This is critical because we know from empirical
evidence that most design rationale systems have not failed because of the
inadequacy of a computational substrate, but because they did not pay
enough attention to the question “who is the beneficiary and who has to do
the work?” [24]. Our experiences with the use of GIMMe at NYNEX Science &
Technology and the University of Colorado have encouraged us to pursue
this idea of a growing group memory and have shown that such a system can
be employed for real world problems and projects. An evolvable DODE and

Gerhard Fischer 13 AI in Structural Engineering

evolvable artifacts within a DODE will require design rationale and,
therefore, GIMMe has to be an integral component.

5.2 Expectation Agents

Expectation Agents [22] were designed to support communication between
end users and developers of an interactive system during actual use situations
[25]. Expectation Agents observe and analyze the reactions of end users to the
system by not relying on only a small subset of end users but by reaching the
whole (or a large subset) of the community of practice.

Description. Expectation Agents are an active part of the system in which the
end user designs artifacts. They observe the actions of the end user and
compare them to descriptions of the intended use of the system. These
descriptions are provided by the system developers and represent their
expectations about how the system should be used (e.g., in which order
certain tasks are performed). If an Expectation Agent identifies a discrepancy
between how an end user uses the system and the description provided by a
system developer it then notifies the developer and prompts the end user for
an explanation. This explanation is then emailed to the developer as well,
establishing a communication between the system developer and a specific
end user.

How do Expectation Agents support evolution? Expectation Agents are used
to support evolutionary growth. When developers and users create a seed
(see Fig. 3) they hold a number of explicit and implicit assumptions about
how the system will be used and how it supports the work practices.
Expectation Agents are one way to compare those assumptions to actual use
patterns.

5.3 Visual AgenTalk (VAT)

The objective behind VAT is to support end-user modifications and
programming as an essential component for an evolvable DODE [13].

Description. VAT [40] (a detailed description of VAT can be found at
http://www.cs.colorado.edu/~ralex) has been created on top of the
Agentsheets programming substrate. Agentsheets is used as a substrate for
the construction component (e.g., specifically to create interactive graphical
simulations of complex dynamic systems). These simulations consist of active
agents that interact with each other and exhibit a specific behavior. Combined
with Agentsheets in a layered environment, Visual AgenTalk is used to define
end-user programming languages that are tailorable to a particular domain,
promote program comprehensibility, and provide end users with control over
powerful, multimodal interaction capabilities. VAT provides mechanisms for
the creation of commands so that domain-specific languages can be
developed. Conditions, actions, and rules are all graphical objects, and end
users can try out their programs by dragging and dropping them onto agents

Gerhard Fischer 14 AI in Structural Engineering

in a worksheet. The ability to test programs within the context of a particular
agent increases the end user’s ability to comprehend Visual AgenTalk
programs.

How does VAT support evolution? VAT enables end users to modify and
program the behavior of active agents inside a simulation environment. New
agent types can be created, modified, and shared. Thus VAT promotes
evolutionary growth on the hands of end users. VAT extends the construction
and simulation component in order to accommodate end-user programming.
VAT is used to implement expectation agents, thereby giving end users the
possibility to modify the behavior of expectation agents. Agentsheets
provides mechanisms that can be used by both environment developers and
domain designers to define the look of individual construction objects, and
VAT can be used by environment developers to define domain-specific
languages to be used by domain designers to evolve the behavior of the
construction objects.

5.4 New Conceptualization of the World Wide Web

The Web in its current form does not support evolutionary design. Fig. 4
presents three models that illustrates different types of Web usage [3].

Traditional Web-based use engages the Web as a Broadcast Medium (Fig. 4,
Model M1). In this model, instructional content is predetermined and placed
on static Web pages. Most popular general-purpose Web tools provide
support for the easy generation of this static content. In M1, the Web serves as
a distribution channel and provides few opportunities for learners to interact
with the information because the content was not originally designed to be
interactive. Responding to the need for feedback from consumers, many Web
sites are evolving into forms that augment content with some communication

channels. This mechanism of broadcast with feedback (M2) expands the original
model by providing some link from consumer to producer such as allowing
learners to provide feedback and ask questions by filling out forms. Although

Delegation

Web Users

Web Master

World Wide Web

M1
The Web as Broadcast Medium

Feedback
(via email
or forms)

World Wide Web

M2
Broadcast with Feedback

Seed

Distributed
Collaboration

M3
Evolutionary and Collaborative Design

Fig. 4. Making the World Wide Web a Medium for Collaborative,
Evolutionary Design

Gerhard Fischer 15 AI in Structural Engineering

users can react to information provided by the author, this presentation
model provides little support for evolution.

The M3 model demonstrates an essential requirement for collaboration and
evolution for the Web. In M3, users can use the Web to collaborate on projects
by actively contributing and by learning from all contributors. The evolution
of content and ideas is now the responsibility of the participating community
of practice, focusing on the distributed generation of content and the
reflection upon it. An M3-type model is needed to support the SER model.
When a wide variety of individuals collaborate in a cooperative forum, the
unique skills of the members all become valuable resources in making the
Web resources useful in the current context. The M3 model poses a number of
technical challenges, including the ability (1) to add to an information space
without going through an intermediary, (2) to modify the structure of the
information space, and (3) to modify at least some of the existing information.

6 Assessment

6.1 Understanding Pitfalls Associated with Evolutionary Design

To make evolutionary design a more ubiquitous activity, the forces that
prohibit or hinder evolution must be understood. Examples of such forces are:
(i) the resistance to change because it requires learning efforts and may create
unknown difficulties and pressures, (ii) the problem of premature standards,
(iii) the difficulties created by installed bases and legacy systems, and (iv) the
issues of who are the beneficiaries and who has to do the work in order for
evolution to occur.

The Oregon Experiment [2] (a housing experiment at the University of
Oregon instantiating the concept of end user-driven evolution) serves as an
interesting case study that end user-driven evolution is no guarantee for
success. The analysis of its unsustainability indicated the following major
reasons: (1) there was a lack of continuity over time, and (2) professional
developers and users did not collaborate, so that there was a lack of synergy.
These findings led us in part to postulate the need for a reseeding phase
(making evolutionary development more predictable), in which developers
and users engage in intense collaborations. With design rationale captured,
communication enhanced, and end user support available, developers have a
rich source of information to evolve the system in the way users really need it.
Another interesting source of information for the SER model is Kuhn [26], in
which general conceptual frameworks can be found to decide when the time
has come to engage in a reseeding process rather than continue with
evolutionary growth.

6.2 Assessment of the SER Model

The SER model is motivated by how large software systems, such as Emacs,
Microsoft-Word, Unix, and the X Window System, have evolved over time. In
such systems, users develop new techniques and extend the functionality of

Gerhard Fischer 16 AI in Structural Engineering

the system to solve problems that were not anticipated by the system's
authors (following the observation that any artifact should be useful in the
expected way, but a truly great artifact lends itself to uses the original
designers never expected). New releases of the system often incorporate ideas
and code produced by users. In the same way that these software systems are
extensible by programmers who use them,

Open-Source Software Systems. The development of the Linux operation
system [37] provides an interesting existence proof that reliable, useful, and
usable complex systems can be built in a decentralized “Bazaar style” by
many [41] rather than in a centralized, “Cathedral style” by a few. The Linux
development model treats users as co-developers and is currently tested in a
number of new areas, such as: (1) Netscape Communicator (for more
information see http://www.mozilla.org/); (2) Gamelan
(http://www.gamelan.com; the first community repositories of Java-related
information allowing Java developers looking for information about what
other people are doing with Java; the large number of developers who
contribute to the Gamelan repository and the number of people who search
for information in Gamelan provide evidence that the Java community has
taken a great deal of interest in using community repositories to locate
information); (3) Educational Object Economy (EOE;
http://trp.research.apple.com/; the EOE is realized as a collection of Java
objects (mostly completed applets) designed specifically for education; the
target users of the EOE are teachers wishing to use new interactive technology
and developers interested in producing educational software).

Domain-Oriented Design Environments. DODEs poses a major additional
challenge to make the SER model feasible and workable: Whereas the people
in the above mentioned development environments are computationally
sophisticated and experienced users, DODEs need to be extended by domain
designers who are neither interested in nor trained in the (low-level) details of
computational environments. The SER model explores interesting new
ground between the two extremes of “put all the knowledge in at the
beginning” and “just provide an empty framework.” Designers are more
interested in their design task at hand than in maintaining a knowledge base.
At the same time, important knowledge is produced during daily design
activities that should be captured. Rather than expect designers to spend
extra time and effort to maintain the knowledge base as they design, we
provide tools to help designers record information quickly and without
regard for how the information should be integrated with the seed.
Knowledge-base maintenance is periodically performed during the reseeding
phases by environment developers and domain designers in a collaborative
activity.

Gerhard Fischer 17 AI in Structural Engineering

7 Evolutionary Design—Beyond the Boundaries of
Disciplines

7.1 Avoid Reinventing the Wheel

In this article, I have mostly discussed examples from the domain of software
design. Software design is a new design discipline relative to other more
established disciplines. Software designers can learn a lot by studying other
design disciplines such as architectural design, graphic design, information
design, urban design, engineering design, organizational design, musical
composition, and writing. For example, the limitations and failures of design
approaches that rely on directionality, causality, and a strict separation
between analysis and synthesis have been recognized in architecture for a
long time [12]. A careful analysis of these failures could have saved software
engineering the effort expended in finding out that waterfall-type models can
at best be an impoverished and oversimplified model of real design activities.
Assessing the successes and failures of other design disciplines does not mean
that they have to be taken literally (because software artifacts are different
from other artifacts), but that they can be used as an initial framework for
software design.

7.2 Evolutionary Design in Architecture

Evolutionary design is a concept of equal important in architecture [6]. For
many arguments and considerations articulated in this article, the words
“software systems” and “buildings”, and “software designer/programmer”
and architect are interchangeable. Software design being the much younger
discipline could learn a lot from design methodologies developed in
architectural design. Designing complex artifacts from scratch, while often
considered to be highly desirable to avoid the constraints of dealing with
existing structures and legacy systems, leads to artifacts which are often
missing a “quality” that exists in evolving artifacts—as illustrated by cities
such as Brasilia and Abuja versus cities such as London and Paris. Artifacts
are embedded in time, and over time many of the determining factors
influencing a design will change; and because buildings and cities are going
to be modified many times, they should be designed with unanticipated
future changes in mind.

The problems facing both professional groups have initiated at least some
interest in each other work. Alexander’s work [1] on patterns has found many
followers in the software design community, specifically in object-oriented
design [21]. In our own research we have created an “Envisionment and
Discovery Collaboratory” to explore new computational environments that
enhance communication between different stakeholders, facilitate shared
understanding, and assist in the creation of better artifacts by integrating
physical and computational media for design [4]. By doing so, we attempt to
integrate the best of both worlds: the dynamic nature of computational media
and the strength of physical media in allowing people to operate and think
with tangible objects.

Gerhard Fischer 18 AI in Structural Engineering

7.3 DODEs in Architecture

The concept of DODEs can be applied to many areas, and in our work (in
close collaborations with professionals from the respective design disciplines),
we have created DODES for kitchen design [14], lunar habitat design [46], and
urban design [4]. Design activities embedded in computational environments
are the best domains for DODEs, because the activities take place within the
computational environment and the power of DODEs (providing critics,
linking action and reflection spaces, supporting simulations, etc.) can be most
successfully and most easily exploited.

8 Conclusions

DODEs are software systems that support design activities within a particular
domain and are built specifically to evolve. DODEs have provided the
foundations in our research to develop a theoretical and conceptual
framework for the evolutionary design of complex systems illustrating (i) the
importance of end user modifiability and end user programming, (ii) the
capture and retrieval of design rationale, and (iii) the necessity of improved
communications among different design stakeholders including system
developers and end users.
Evolution of complex systems is a ubiquitous phenomenon. This is true in the
physical domain, where, for example, artificial cities such as Brasilia are
missing essential ingredients from natural cities such as London or Paris.
“Natural” cities gain essential ingredients through their evolution—designers
of “artificial” cities are unable to anticipate and create these ingredients. It is
equally true for software systems for the reasons argued in this paper. A
challenge for the future is to make (software) designers aware of essential
concepts that originated and were explored in evolution, such as ontogeny,
phylogeny, and punctuated equilibrium. Even though we are convinced that
models from biology may be more relevant to future software systems than
models from mathematics, we also have to be cautious: to follow an
evolutionary approach in software design successfully does not imply that
concepts from biological evolution should be mimicked literally, but rather
they need to be reinterpreted in the domain of software design [5].

Gerhard Fischer 19 AI in Structural Engineering

References

1 Alexander, C.; Ishikawa, S.; Silverstein, M.; Jacobson, M.; Fiksdahl-King, I.; Angel,
S., A Pattern Language: Towns, Buildings, Construction; Oxford University Press: New
York, 1977.

2 Alexander, C.; Silverstein, M.; Angel, S.; Ishikawa, S.; Abrams, D., The Oregon
Experiment; Oxford University Press: New York, NY, 1975.

3 Ambach, J.; Fischer, G.; Ostwald, J.; Repenning, A., Making the World Wide Web A
Medium for Collaborative, Evolutionary Design, At http://www.cs.colorado.edu-
/~ostwald/papers/WWW97/PAPER200.html, 1997.

4 Arias, E. G.; Fischer, G.; Eden, H., Enhancing Communication, Facilitating Shared
Understanding, and Creating Better Artifacts by Integrating Physical and Computational
Media for Design, In Proceedings of Designing Interactive Systems (DIS '97);
Amsterdam, The Netherlands, 1997; pp. 1-12.

5 Basalla, G., The Evolution of Technology; Cambridge University Press: New York,
1988.

6 Brand, S., How Buildings Learn—What Happens After They're Built; Penguin
Books: New York, 1995.

7 Brooks, F. P., Jr., No Silver Bullet: Essence and Accidents of Software Engineering, In
IEEE Computer 1987, 20, pp. 10-19.

8 Computer Science and Technology Board, Scaling Up: A Research Agenda for
Software Engineering, In Communications of the ACM 1990, 33, pp. 281-293.

9 Cross, N., Developments in Design Methodology; John Wiley & Sons: New York, 1984.
10 Curtis, B.; Krasner, H.; Iscoe, N., A Field Study of the Software Design Process for Large

Systems, In Communications of the ACM 1988, 31, pp. 1268-1287.
11 Dawkins, R., The Blind Watchmaker; W.W. Norton and Company: New York -

London, 1987.
12 Ehn, P., Work-Oriented Design of Computer Artifacts; Almquist & Wiksell

International: Stockholm, Sweden, 1988.
13 Eisenberg, M.; Fischer, G., Programmable Design Environments: Integrating End-User

Programming with Domain-Oriented Assistance, In Human Factors in Computing
Systems, CHI'94; Boston, MA, 1994; pp. 431-437.

14 Fischer, G., Domain-Oriented Design Environments, In Automated Software Engineering
1994, 1, pp. 177-203.

15 Fischer, G., Putting the Owners of Problems in Charge with Domain-Oriented Design
Environments In User-Centred Requirements for Software Engineering Environments; R.
W. D. Gilmore, F. Detienne, Ed.; Springer Verlag: Heidelberg, 1994; pp. 297-306.

16 Fischer, G., Turning Breakdowns into Opportunities for Creativity, In Knowledge-Based
Systems, Special Issue on Creativity and Cognition 1995,

17 Fischer, G.; Girgensohn, A., End-User Modifiability in Design Environments, In
Human Factors in Computing Systems, (CHI'90); Seattle, WA, 1990; pp. 183-191.

Gerhard Fischer 20 AI in Structural Engineering

18 Fischer, G.; Lemke, A. C.; McCall, R.; Morch, A., Making Argumentation Serve Design
In Design Rationale: Concepts, Techniques, and Use; T. Moran and J. Carrol, Ed.;
Lawrence Erlbaum and Associates: Mahwah, NJ, 1996; pp. 267-293.

19 Fischer, G.; Lindstaedt, S.; Ostwald, J.; Schneider, K.; Smith, J., Informing System
Design Through Organizational Learning, In International Conference on Learning
Sciences (ICLS'96); Chicago, IL, 1996; pp. 52-59.

20 Fischer, G.; McCall, R.; Ostwald, J.; Reeves, B.; Shipman, F., Seeding, Evolutionary
Growth and Reseeding: Supporting Incremental Development of Design Environments, In
Human Factors in Computing Systems (CHI'94); Boston, MA, 1994; pp. 292-298.

21 Gamma, E.; Johnson, R.; Helm, R.; Vlissides, J., Design Patterns - Elements of Reusable
Object-Oriented Systems; Addison-Wesley: Reading, MA, 1994.

22 Girgensohn, A.; Redmiles, D.; Shipman, F., Agent-Based Support for Communication
between Developers and Users in Software Design In Proceedings of the 9th Annual
Knowledge-Based Software Engineering (KBSE-94) Conference (Monterey, CA); IEEE
Computer Society Press: Los Alamitos, CA, 1994; pp. 22-29.

23 Greenbaum, J.; Kyng, M., Design at Work: Cooperative Design of Computer Systems;
Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, 1991.

24 Grudin, J., “Seven plus one Challenges for Groupware Developers,” 1991.
25 Henderson, A.; Kyng, M., There's No Place Like Home: Continuing Design in Use In

Design at Work: Cooperative Design of Computer Systems; J. Greenbaum and M. Kyng,
Ed.; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, 1991; pp. 219-240.

26 Kuhn, T. S., The Structure of Scientific Revolutions; The University of Chicago Press:
Chicago, 1970.

27 Landauer, T. K.; Dumais, S. T., A Solution to Plato's Problem: The Latent Semantic
Analysis Theory of Acquisition, Induction, and Representation of Knowledge, In
Psychological Review 1997, 104, pp. 211-240.

28 Laszlo, E., Evolution: The Grand Synthesis; Shambhala Publications, Inc.: 1987.
29 Lee, L., The Day The Phones Stopped; Donald I. Fine, Inc.: New York, 1992.
30 Lewis, T., Object-Oriented Application Frameworks; Prentice Hall: Englewood Cliffs,

New Jersey, 1995, 344 pages.
31 MacLean, A.; Carter, K.; Lovstrand, L.; Moran, T., User-Tailorable Systems: Pressing

the Issues with Buttons In Human Factors in Computing Systems, CHI'90 Conference
Proceedings (Seattle, WA)New York, 1990; pp. 175-182.

32 Moran, T. P.; Carroll, J. M., Design Rationale: Concepts, Techniques, and Use;
Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, 1996.

33 Nardi, B.; Zarmer, C., Beyond Models and Metaphors: Visual Formalisms in User
Interface Design, In Journal of Visual Languages and Computing 1993, pp. 5-33.

34 Norman, D. A., Turn Signals are the Facial Expressions of Automobiles; Addison-
Wesley Publishing Company: Reading, MA, 1993.

35 Polanyi, M., The Tacit Dimension; Doubleday: Garden City, NY, 1966.
36 Popper, K. R., Conjectures and Refutations; Harper & Row: New York, Hagerstown,

San Francisco, London, 1965.
37 Raymond, E. S., The Cathedral and the Bazaar, At

http://earthspace.net/~esr/writings-/cathedral-bazaar/cathedral-bazaar.html,
1998.

Gerhard Fischer 21 AI in Structural Engineering

38 Redmiles, D. F., “From Programming Tasks to Solutions—Bridging the Gap
Through the Explanation of Examples,” 1992.

39 Repenning, A.; Ambach, J., The Agentsheets Behavior Exchange: Supporting Social
Behavior Processing, In Computer-Human Interaction (CHI '97); Atlanta, GA, 1997; pp.
26-27 (Extended Abstracts).

40 Repenning, A.; Ioannidou, A., Behavior Processors: Layers between End-Users and Java
Virtual Machines, In Visual Languages; Capri, Italy, 1997; pp. 402-409.

41 Resnick, M., Turtles, Termites, and Traffic Jams; The MIT Press: Cambridge, MA,
1994.

42 Rich, C. H.; Waters, R. C., Automatic Programming: Myths and Prospects In Computer;
The Computer Society: Los Alamitos, CA, 1988; Vol. 21; pp. 40-51.

43 Rittel, H., Second-Generation Design Methods In Developments in Design Methodology;
N. Cross, Ed.; John Wiley & Sons: New York, 1984; pp. 317-327.

44 Schön, D. A., The Reflective Practitioner: How Professionals Think in Action; Basic
Books: New York, 1983.

45 Simon, H. A., The Sciences of the Artificial; The MIT Press: Cambridge, MA, 1996.
46 Stahl, G., Interpretation in Design: The Problem of Tacit and Explicit Understanding in

Computer Support of Cooperative Design, Ph.D. dissertation. UMI#9423544,
Department of Computer Science. University of Colorado at Boulder. Technical
Report CU-CS-688-93, 1993.

47 Swartout, W. R.; Balzer, R., On the Inevitable Intertwining of Specification and
Implementation In Communications of the ACM, 1982; Vol. 25; pp. 438-439.

48 Terveen, L. G.; Selfridge, P. G.; Long, D. M., Living Design Memory: Framework,
Implementation, Lessons Learned, In Human-Computer Interaction 1995, 10, pp. 1-37.

49 Winograd, T., From Programming Environments to Environments for Designing, In
Communications of the ACM 1995, 38, pp. 65-74.

