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Abstract. We live in a world characterized by evolution—that is, by 
ongoing processes of development, formation, and growth in both 
natural and human-created systems. Biology tells us that complex, 
natural systems are not created all at once but must instead evolve over 
time. We are becoming increasingly aware that evolutionary processes 
are ubiquitous and critical for social, educational, and technological 
innovations as well. 

The driving forces behind the evolution of these systems is their use 
by communities of practice in solving real-world problems as well as the 
changing nature of the world, specifically as it relates to technology. The 
seeding, evolutionary growth, and reseeding model is a process 
description of how this happens. By integrating working and learning in 
communities of practice, we have created organizational memories that 
include mechanisms to capture and represent task specifications, work 
artifacts, and group communications. These memories facilitate 
organizational learning by supporting the evolution, reorganization, and 
sustainability of information repositories and by providing mechanisms 
for access to and delivery of knowledge relevant to current tasks.  

Our research focuses specifically on the following claims about 
design environments embedded within dynamic human organizations: 
(1) they must evolve because they cannot be completely designed prior 
to use; (2) they must evolve to some extent at the hands of the users; (3) 
they must be designed for evolution; and (4) to support this approach 
with World-Wide Web technology, the Web has to be more than a 
broadcast medium; it has to support collaborative design. 

Keywords: design; evolution; domain-oriented design environments; seeding, 
evolutionary growth, and reseeding model (SER model); open versus closed systems 

Acknowledgments. The author would like to thank members of the Center for 
LifeLong Learning & Design at the University of Colorado who have made major 
contributions to the conceptual framework and systems described in this paper. Jim 
Ambach and Ernesto Arias contributed to the conceptual framework and scenario 
development. The research was supported by (1) the National Science Foundation, 
Grants REC-9631396 and IRI-9711951; (2) NYNEX Science and Technology Center, 
White Plains; (3) Software Research Associates, Tokyo, Japan; (4) PFU, Tokyo, Japan; 
and (5) Daimler-Benz Research, Ulm, Germany. 



 

Gerhard Fischer  2   AI in Structural Engineering 

1 Introduction 

1.1 Necessity for Evolution 

The basic assumption that complete and correct requirements can be obtained 
at some point of time is theoretically and empirically wrong. Many research 
efforts do not take into account the growing evidence that system 
requirements are not so much analytically specified as they are collaboratively 
evolved through an iterative process of consultation between end users and 
software developers [23]. A consequence of the "thin spread of application 
knowledge" [10] is that specification errors often occur when designers do not 
have sufficient application domain knowledge to interpret the customer's 
intentions from the requirement statements. 

Design methodologists (e.g., [43,44]) demonstrate with their work that the 
design of complex systems requires the integration of problem framing and 
problem solving and they argue convincingly that (1) one cannot gather 
information meaningfully unless one has understood the problem, but one 
cannot understand the problem without information about it; and (2) 
professional practice has at least as much to do with defining a problem as 
with solving a problem.  New requirements emerge during development 
because they cannot be identified until portions of the system have been 
designed and implemented.  The conceptual structures underlying complex 
software systems are too complicated to be specified accurately in advance 
and too complex to be built faultlessly [7]. Specification and implementation 
have to co-evolve [47] requiring the owners of the problems [15] to be present 
in the development. While evolution is no panacea and creates its own 
problems, there are strong reasons to increase the efforts and the costs to 
include mechanisms for evolution (such as end-user modifiability, 
tailorability, adaptability, design rationale, making software “soft”) into the 
original design of complex systems. Experience has shown [8,25] that the costs 
saved in the initial development of system by ignoring evolution will be spent 
several times over during the use of a system. 

1.2 Theory about Evolution of Complex Systems 

Evolution of complex systems is a ubiquitous phenomenon. Many researchers 
have addressed the evolutionary character of successful complex systems and 
of scientific endeavor. Laszlo [28] stresses that a new paradigm is emerging in 
many fields, leading to a replacement of earlier ideas that were based on 
mechanistic determinism toward new models of change, indeterminance and 
evolution. Popper [36] reminds us that knowledge should be open to critical 
examination and that the advance of knowledge consists in the modification 
of earlier knowledge. Dawkins [11] demonstrates that big-step reductionism 
cannot work as an explanation of mechanism; we can't explain a complex 
thing as originating in a single step, but complex things evolve (implying that 
models from biology may be more relevant to future software systems than 
models from mathematics).  
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1.3 The Evolution of Complex Software Systems 

Evolution is especially essential in software systems. The assumption of 
complete requirements at any point in time is detrimental to the development 
of successful (i.e., useful and usable) software systems. Brooks [7] argues that 
successful software gets changed because it offers the possibility to evolve. Lee 
[29] describes many convincing examples (including the failure of the Aegis 
system in the Persian Gulf) that design approaches based on the assumption 
of complete and correct requirements do not correspond to the realities of this 
world. Curtis and colleagues [10] identify in a large-scale empirical 
investigation that fluctuating and conflicting requirements are critical 
bottlenecks in software production and quality. The Computer Science and 
Technology Board [8] provides empirical data that 40-60 percent of the 
lifecycle costs of a complex system is absorbed by maintenance and 75 percent 
of the total maintenance efforts are enhancements. Much of this cost is due to 
the fact that a considerable amount of essential information (such as design 
rationale [18,31]) is lost during development and must be reconstructed by the 
designers who maintain and evolve the system. In light of these data, 
development and maintenance have to merge into cycles of an evolutionary 
process making capturing of design rationale a necessity rather than a luxury. 

1.4 Claims about Evolution 

Software design needs to be understood as an evolutionary process where 
system requirements and functionality are determined through an iterative 
process of collaboration among multiple stakeholders (including developers 
and users). Requirements cannot be completely specified before system 
development occurs. Our previous study of design processes support the 
following claims: 
• Software systems must evolve; they cannot be completely designed prior to use. 

Design is a process that intertwines problem solving and problem framing 
[43]. Software users and designers will not fully determine a system’s 
desired functionality until that system is put to use. Process models that 
describe the different phases of the software life cycle need to take 
advantage of this fact. 

• Software systems must evolve at the hands of the users. End users experience a 
system’s deficiencies; subsequently, they have to play an important role in 
driving its evolution. Software systems need to contain mechanisms that 
allow end-user modification of system functionality. 

• Software systems must be designed for evolution. Through our previous 
research in software design, we have discovered that systems need to be 
designed a priori for evolution. Software architectures need to be developed 
for software that is designed to evolve. 
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2 Domain-Oriented Design Environments (DODEs) 

Domain-oriented design environments (DODEs) [14] are software systems 
that support design activities within a particular domain such as the design of 
kitchens, voice dialog systems, and computer networks. DODEs are a 
particularly good example of complex software systems that need to evolve. 
Design within a particular domain typically involves several stakeholders 
whose knowledge can be elicited only within the context of a particular 
design problem. Different stakeholders include the developers of a DODE 
(environment developers), the end users of a DODE (domain designers), and 
the people for whom the design is being created (clients). To effectively 
support design activities, DODEs need to increase communication between 
the different stakeholders and anticipate and encourage evolution at the 
hands of domain designers. 

Software systems (such as DODEs) model parts of our world (e.g., the 
physical computer networks consisting of computers, networks, etc.). Our 
world evolves in numerous dimensions as new artifacts appear, new 
knowledge is discovered, and new ways of doing business are developed. 
There are fundamental reasons why systems cannot be done “right” at the 
beginning. Successful software systems need to evolve.  

2.1 Design Environments: Limited Scope, Better Support 

Not all problems in the development of any complex software can be solved 
by one (and always the same) approach. The more specifically we address a 
certain kind of complex software, the more likely will we be able to find 
effective support for its evolutionary development. Henderson and Kyng [25] 
demonstrate that enhancements extending through the lifetime of a complex 
system are critical. Norman [34] shows that design and evolution have many 
things in common. Simon [45] provides convincing evidence that complex 
systems evolve faster if they can build on stable subsystems. 

In our work on DODEs, we build on object-oriented techniques, but 
transcend pure, basic object-orientation by integrating and embedding object 
abstractions in the specific context of design in an evolving domain. Like design 
patterns [1,21] and application frameworks [30], DODEs provide a 
meaningful context for evolution [13]. DODEs are even more powerful than 
the other above-mentioned contextualizations, as they take the domain into 
account. 

2.2 Domain Orientation: Situated Breakdowns and Design Rationale 

Domain-oriented systems are rooted in the context of use in a domain. While 
the DODE approach itself is generic, each of its applications is a particular 
domain-oriented system. Our emphasis on domain-oriented design 
environments acknowledges the importance of situated and contextualized 
communication and design rationale as the basis for effective evolutionary 
design. Polanyi [35] analyzes the observation that human knowledge is tacit 
(i.e., we know more than we can say) and that some of it will be activated 
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only in actual problem situations. In early knowledge-based system building 
efforts, there was a distinct knowledge acquisition phase that was assumed to 
lead to complete requirements—contrary to our assumption of the seeding, 
evolutionary growth, reseeding (SER) model (presented later in the paper). 
The notion of a “seed” in the SER model emphasizes our interpretation of the 
initial system as a catalyst for evolution—evolution that is in turn supported 
by the environment itself.  

2.3 End-User Modification and Programming for Communities: 
Evolution at the Hands of Users 

Because end users experience breakdowns and insufficiencies of a design 
environment in their work, they should be able to report, react to, and resolve 
those problems.  Mechanisms for end-user modification and programming 
are, therefore, a cornerstone of  evolvable systems. At the core of our 
approach to evolutionary design lies the ability of end users (in our case, 
domain designers) to make significant changes to system functionality, and to 
share those modifications within a community of designers. It is their 
perception that should determine what is considered urgent to change, not 
the risks determined by developers. The types of changes that must occur 
during the evolutionary growth of a system go beyond the setting of 
predefined parameters or preferences and include the ability to alter system 
behavior in non-trivial ways. Winograd [49] argues why design environments 
are needed to make end-user programming feasible. We don’t assume that all 
designers will be willing or interested in making system changes, but drawing 
upon the work of Nardi [33] we do know that within local communities of 
software use there often exist local developers and power users who are 
interested in and capable of performing these tasks.  

3 Evolutionary Design at Work: A Scenario 

The following scenario illustrates how a design environment can affect the 
exemplary domain of computer network design. The scenario emphasizes the 
importance of end-user driven evolution. The system described, NetDE (see Fig. 
1 and Fig. 2), is a DODE for the domain of computer network design. NetDE 
incorporates several principles including: 

• Domain-oriented components that provide domain designers (in this 
case, computer network designers) the capability to easily create design 
artifacts; these domain designers are the end-users of NetDE. 

• Features that allow the specification of design constraints and goals so 
that the system understands more about particular design situations and 
gives guidance and suggestions for designers relevant to those 
situations. 

• Mechanisms that support the capture of design rationale and 
argumentation embedded within design artifacts so that they can best 
serve the design task. 
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• Mechanisms that support end-user modifiability so that the network 
designers experiencing deficiencies of NetDE can drive the evolution of 
the system. 

• Features that increase communication between the system stakeholders 
(i.e., designers of NetDE and the network designers using NetDE).  

• The integration of communities of practice within the evolution of 
NetDE. 

 
This scenario involves two network designers (D1, D2) at the University of 
Colorado who have been asked to design a new network for clients within the 
Publications Group in the dean’s office at the College of Engineering. 

3.1 Evolution of Design Artifacts: Designing a New Network 

D1's clients are interested in networking ten newly purchased Macintosh 
Power PCs and a laser printer. Through a combination of email discussions 
and meetings, D1 learns that the clients want to be able to share the printer, 
swap files easily, and send each other email. D1 raises the issue of connecting 
to the Internet, and was told that the clients would be interested at some 
point, but not for the time being. It was also made clear that the clients had 
spent most of their budget on the computer hardware, and did not have much 
left over for sophisticated network services and tools. 

From our previous work in network design, we know that design 
specification and rationale comes from a number of stakeholders, including 
network designers and clients, and is captured in different media including 
email and notes. To be most effective, this rationale needs to be stored in a 
way that allows access to it from the relevant places within a design. 

D1 invokes the NetDE system. A World-Wide Web (WWW) Browser 
appears on the desktop presenting a drawing of the College of Engineering. 
Every network and subnet in the College of Engineering can be accessed by 
navigating through different parts of the drawing. By selecting the “New 
Design” option, D1 is presented an empty NetDE page that he names 
“Publications OT 8-6” after the office where the clients are located. The new 
page becomes a repository for all of the background information and rationale 
that D1 has regarding the new network. This is achieved by sending all email 
and text files that D1 has to the (automatically created) email address 
“PublicationsOT8-6.” NetDE insures that the WWW page immediately 
updates itself to show links to the received mails and files (Fig. 1, (1)). 

Selecting the “Launch Construction Component” option opens a palette of 
network objects (Fig. 1, (2)) as well as a worksheet (3). D1 starts by specifying 
certain design constraints to the system (4). Immediately the Catalog (5) 
displays a selection of existing designs that have constraints similar to those 
specified by D1. Selecting one of the designs represented in the Catalog moves 
that design into the worksheet where D1 can modify it. D1 changes the design 
to reflect the specific needs of the Publications Group.  NetDE is accessible 
through the World-Wide Web, so that other network designers (D2...Dn) can 
use it, also. The existing designs may be contributions from other designers. 
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WWW access is crucial for maintaining a distributed community of 
practice. The Behavior Exchange [39] is addressing these needs. The capture 
of design rationale and argumentation can occur through the use of a group 
memory. The GIMMe system [19] explores the creation and maintenance of a 
group memory accessible through the WWW.  

(1)

(2)(3)

(4)

(5)

 

Fig. 1. NetDE in Use 

Finally, NetDE provides a domain specific construction mechanism (the 
palette and the worksheet), and allows the specification of design constraints 
and goals. Using additional specification mechanisms, D1 describes how the 
network will be used, and what kinds of networking services are desired. This 
is the first time D1 has networked Macs, so he takes advantage of the NetDE 
critiquing feature, which will evaluate his design and compare it to the 
established design constraints. During evaluation, NetDE suggests the use of 
the EtherTalk network protocol, and the PowerTalk email capabilities that 
come standard with the Macs. D1 agrees with this assessment because they 
limit the cost of the network. He finishes creating his design. 

Integration of specification, construction, catalog, and argumentation 
components is the characteristic strength of a DODE such as NetDE. These 
components and their interaction are critical to the "evolvability" of the 
system. The process D1 and D2 follow (below) is an instantiation of our 
seeding-evolutionary growth-reseeding process model. 
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3.2 Evolution of a Design Environment: NetDE 

Several months pass, and Publications is interested in changing its network. 
D1 is not available, so D2 is to design the new changes. D2 receives email from 
Publications indicating that their network needs have changed. They want to 
start publishing WWW pages and will need Internet access. They will also be 
using a Silicon Graphics Indy computer. They have received a substantial 
budget increase for their network. 

(1)

(2)

(3)

(4)

 

Fig. 2. The Network Evolves 

First, D2 accesses the NetDE page that describes the Publications network. 
She quickly reviews the current design and rationale to learn what has 
already occurred. She updates the design specification to reflect the fact that 
cost is no longer as important, and that speed has become more important. 
Then, she searches the NetDE palette to see if it has an icon representing the 
Indy. She does not find one, and realizes that it must be added. After 
reviewing the specs for the Indy from the Silicon Graphics Web Page, D2 
creates a new palette element for the Indy (Fig. 2, (1)), and then defines its 
characteristics using some of NetDE’s end user modifiability features (Fig. 2, 
(2)). According to the company’s specs, the Indy has built-in networking 
capabilities, and understands the TCP/IP network protocol. D2 enters this 
information, and the new icon appears in the palette. 

Since breakdowns are experienced by end users, they need to be able to 
evolve the system’s functionality. This calls for the development of 
specialized mechanisms that allow end users to alter system functionality 
without having to be computer programmers. In order for NetDE to take full 
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advantage of new objects added by the network designer, it must provide 
facilities that define not just the look of the new object, but also its behavior. 

D2 adds the Indy to the design, and NetDE indicates (by displaying 
different colored wires) that the two types of machines (Macs and the Indy) 
are using different network protocols. D2 knows that Macs can understand 
TCP/IP protocol, so she changes the network’s protocol to TCP/IP. After 
invoking NetDE’s critiquing mechanism, D2 receives a critiquing message 
indicating that the use of TCP/IP violates the easy file-sharing design 
constraint (Fig. 2, (3)). After reading through some of the argumentation (Fig. 
2, (4)), D2 learns that although file sharing is possible in TCP/IP with the 
Macs, it is not as easy as when they are using EtherTalk. D2 decides that this is 
not a constraint she would like to break, and decides to ask some other 
network designers if there is a way to get the Indy to understand EtherTalk. 
D2 learns that there is software the Indy can run to translate protocols, and she 
adds an annotation to the Indy object to reflect this. 

A critiquing component is important in linking design rationale and 
argumentation to the designed artifact as well as for pointing out potential 
breakdowns to the designer. Very drastic changes (like the introduction of 
wireless communication) will not be covered by the end-user modification 
mechanisms. In those cases, the ability to describe system changes to 
environment developers is critical for maintaining communication among 
different stakeholders of the system. When unexpected modification needs 
occur, users must be able to articulate their needs and notify developers. The 
information provided to the environment developer will be useful to describe 
how the system is being used and what sort of issues the system is not 
addressing, leading to subsequent radical evolution of the system. 

4 Computer-Supported Evolutionary Design 

The above scenario illustrates both (1) the DODE itself evolves and (2) how 
artifacts created with the DODE evolve at the hands of end-users (such as 
network designers). The ability of a DODE to co-evolve with the artifacts 
created within it makes the DODE architecture the ideal candidate for 
creating an evolvable application family. In the following, we describe the 
SER process model as a systematic way to structure evolution [20]. 

The domain orientation of a design environment enriches (1) the amount of 
support that a knowledge-based system can provide, and (2) the shared 
understanding among stakeholders. Design knowledge includes domain 
concepts, argumentation, case-based catalogs, and critiquing rules. The appeal 
of the DODE approach lies in its compatibility with an emerging 
methodology for design [9,12], views of the future as articulated by practicing 
software engineering experts [8], reflections about the myth of automatic 
programming [42], findings of empirical studies [10], and the integration of 
many recent efforts to tackle specific issues in software design (e.g., recording 
design rationale [18], supporting case-based reasoning [38], creating artifact 
memories [48], and so forth).  
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4.1 Seeding, Evolutionary Growth, Reseeding—The SER Process Model 
for DODEs 

Because design in real world situations deals with complex, unique, 
uncertain, conflicted, and unstable situations of practice, design knowledge as 
embedded in DODEs will never be complete because design knowledge is 
tacit (i.e., competent practitioners know more than they can say) [35], and 
additional knowledge is triggered and activated by actual use situations 
leading to breakdowns [16]. Because these breakdowns are experienced by the 
users and not by the developers, computational mechanisms that supporting 
end-user modifiability are required as an intrinsic part of a DODE. 

Three intertwined levels can be distinguished whose interactions form the 
essence of the SER model:  

• On the conceptual framework level, the multifaceted, domain-independent 
architecture constitutes a framework for building evolvable complex 
software systems.  

• When this architecture is instantiated in a domain (e.g., network design), 
a domain-oriented design environment (representing an application 
family) is created on the domain level. An instantiation in the network 
domain is NetDE. 

• Individual artifacts in the domain are developed by exploiting the 
information contained in the generic DODE (in the scenario this is 
represented by the network developed for the Publications Group). 

 
Fig. 3 illustrates the interplay of those three layers. Darker gray indicates 
knowledge domains close to the computer, whereas white emphasizes 
closeness to the design work in a domain. The figure illustrates the role of 
different professional groups in the evolutionary design: the environment 
developer (close to the computer) provides the domain-independent 
framework, and instantiates it into a DODE in collaboration with the help of 
the domain designers (knowledgeable domain workers who use the 
environment to design artifacts; in the scenario, D1 is a domain designer). 
Domain designers are the "end users" of a design environment. The artifact is 
eventually delivered to the client (e.g., the Publications Group in the 
scenario).  

Breakdowns occur when domain designers cannot carry out the design 
work with the existing DODE. Extensions and criticism drive the evolution on 
all three levels: Domain designers directly modify the artifacts when they 
build them (artifact evolution), they feed their modifications back into the 
environment (domain evolution), and—during a reseeding phase—even the 
architecture may be revised (conceptual framework evolution). In Fig. 3, the 
little building blocks represent knowledge and domain elements in any of the 
components of the multifaceted architecture (i.e., the Indy, critics about 
network protocols, etc.). 

The evolution of complex systems in the context of this process model 
(more detail can be found in [20]) can be characterized as follows: 
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Seeding. A seed will be created through a participatory design process 
between environment developers and domain designers. It will evolve in 
response to its use in new network design projects because requirements 
fluctuate, change is ubiquitous, and design knowledge is tacit. Postulating the 
objective of a seed (rather then a complete domain model or a complete 
knowledge base) sets our approach apart from other approaches in software 
engineering and artificial intelligence and emphasizes evolution as the central 
design concept. 

Evolutionary growth. Network experts use the seeded environment to 
undertake specific projects for clients (such as the Publication Group in the 
scenario). During these design efforts, new requirements may surface (e.g., 
the desire to access the Internet), new components may come into existence 
(e.g., the Indy) and additional design knowledge not contained in the seed 
may be articulated (e.g., that EtherTalk supports both AppleTalk and TCP/IP 
protocols). During the evolutionary growth phase, the environment 
developers are not present, thus making end-user modification a necessity 
rather than a luxury (at least, as argued before, for small-scale evolutionary 
changes). Visual AgenTalk (VAT) addresses this problem, building on our 
experience with end-user modifiability and end-user programming [13,17]. 

Reseeding. In a deliberate effort to revise and coordinate information and 
functionality, the environment developers are brought back in to collaborate 
with domain designers to organize, formalize, and generalize knowledge 
added during the evolutionary growth phases.  Organizational concerns [24] 
play a crucial role in this phase. For example, decisions have to be made as to 
which of the extensions created in the context of specific design projects 
should be incorporated in future versions of the generic design environment. 

.
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Fig. 3. The SER Model: A process model for the development and evolution of 
DODES 
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Drastic and large-scale evolutionary changes occur during the reseeding 
phase. 

5 Systems-Building Efforts 

The preceding sections have identified important issues that need to be 
addressed to support evolutionary system development: design rationale, 
design-in-use, end-user modifiability, and collaboration support for a 
community of practice. Following prototypical systems are briefly introduced 
that address those issues. 

5.1 Group Interactive Memory Manager (GIMMe) 

The research objective behind GIMMe [19] is to support the communication 
between different stakeholders involved in the development process and to 
capture and structure this communication in order to make it immediately 
available as design rationale [32]. 

Description. GIMMe is a web-based group memory system. It helps 
communities of practice (e.g., project teams, interest groups) to capture, store, 
organize, share, and retrieve electronic mail conversations. Mail sent to a 
specific group alias is automatically added to an information space and 
categorized according to its subject line. Group members can access the 
information space via the Internet. It supports three retrieval mechanisms to 
this information space: (1) browsing in reverse chronological order, (2) 
browsing according to project-specific categories, and (3) retrieval by free-
form text queries (using the Latent Semantic Indexing algorithm [27]. GIMMe 
supports users in creating, rearranging, or deleting categories and the mail 
belonging to them (a more detailed description of GIMMe can be found at 
http://www.cs.colorado.edu/~stefanie). It will allow groups to create and 
negotiate domain conventions and concepts over time, as well as to evolve 
categories that reflect the structure and vocabulary of the application domain.  

How does GIMMe support evolution? In order for the users to evolve a 
system they have to be able to understand the design decisions that lead to 
the current system. GIMMe addresses the problem of how to capture this 
important information, structure it for later reuse, and make it available to the 
users. GIMMe is an effort demonstrating that design rationale emerges as a 
by-product of normal work. This is critical because we know from empirical 
evidence that most design rationale systems have not failed because of the 
inadequacy of a computational substrate, but because they did not pay 
enough attention to the question “who is the beneficiary and who has to do 
the work?” [24]. Our experiences with the use of GIMMe at NYNEX Science & 
Technology and the University of Colorado have encouraged us to pursue 
this idea of a growing group memory and have shown that such a system can 
be employed for real world problems and projects. An evolvable DODE and 
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evolvable artifacts within a DODE will require design rationale and, 
therefore, GIMMe has to be an integral component. 

5.2 Expectation Agents 

Expectation Agents [22] were designed to support communication between 
end users and developers of an interactive system during actual use situations 
[25]. Expectation Agents observe and analyze the reactions of end users to the 
system by not relying on only a small subset of end users but by reaching the 
whole (or a large subset) of the community of practice.  

Description. Expectation Agents are an active part of the system in which the 
end user designs artifacts. They observe the actions of the end user and 
compare them to descriptions of the intended use of the system. These 
descriptions are provided by the system developers and represent their 
expectations about how the system should be used (e.g., in which order 
certain tasks are performed). If an Expectation Agent identifies a discrepancy 
between how an end user uses the system and the description provided by a 
system developer it then notifies the developer and prompts the end user for 
an explanation. This explanation is then emailed to the developer as well, 
establishing a communication between the system developer and a specific 
end user.  

How do Expectation Agents support evolution? Expectation Agents are used 
to support evolutionary growth. When developers and users create a seed 
(see Fig. 3) they hold a number of explicit and implicit assumptions about 
how the system will be used and how it supports the work practices. 
Expectation Agents are one way to compare those assumptions to actual use 
patterns.  

5.3 Visual AgenTalk (VAT) 

The objective behind VAT is to support end-user modifications and 
programming as an essential component for an evolvable DODE [13]. 

Description. VAT [40] (a detailed description of VAT can be found at 
http://www.cs.colorado.edu/~ralex) has been created on top of the 
Agentsheets programming substrate. Agentsheets is used as a substrate for 
the construction component (e.g., specifically to create interactive graphical 
simulations of complex dynamic systems). These simulations consist of active 
agents that interact with each other and exhibit a specific behavior. Combined 
with Agentsheets in a layered environment, Visual AgenTalk is used to define 
end-user programming languages that are tailorable to a particular domain, 
promote program comprehensibility, and provide end users with control over 
powerful, multimodal interaction capabilities. VAT provides mechanisms for 
the creation of commands so that domain-specific languages can be 
developed. Conditions, actions, and rules are all graphical objects, and end 
users can try out their programs by dragging and dropping them onto agents 
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in a worksheet. The ability to test programs within the context of a particular 
agent increases the end user’s ability to comprehend Visual AgenTalk 
programs. 

How does VAT support evolution? VAT enables end users to modify and 
program the behavior of active agents inside a simulation environment. New 
agent types can be created, modified, and shared. Thus VAT promotes 
evolutionary growth on the hands of end users. VAT extends the construction 
and simulation component in order to accommodate end-user programming. 
VAT is used to implement expectation agents, thereby giving end users the 
possibility to modify the behavior of expectation agents. Agentsheets 
provides mechanisms that can be used by both environment developers and 
domain designers to define the look of individual construction objects, and 
VAT can be used by environment developers to define domain-specific 
languages to be used by domain designers to evolve the behavior of the 
construction objects. 

5.4 New Conceptualization of the World Wide Web 

The Web in its current form does not support evolutionary design. Fig. 4 
presents three models that illustrates different types of Web usage [3]. 

Traditional Web-based use engages the Web as a Broadcast Medium (Fig. 4, 
Model M1). In this model, instructional content is predetermined and placed 
on static Web pages. Most popular general-purpose Web tools provide 
support for the easy generation of this static content. In M1, the Web serves as 
a distribution channel and provides few opportunities for learners to interact 
with the information because the content was not originally designed to be 
interactive. Responding to the need for feedback from consumers, many Web 
sites are evolving into forms that augment content with some communication 

channels. This mechanism of broadcast with feedback (M2) expands the original 
model by providing some link from consumer to producer such as allowing 
learners to provide feedback and ask questions by filling out forms. Although 

Delegation

Web Users

Web Master

World Wide Web

M1
The Web as Broadcast Medium

Feedback
(via email
or forms)

World Wide Web

M2
Broadcast with Feedback

Seed

Distributed
Collaboration

M3
Evolutionary and Collaborative Design  

Fig. 4. Making the World Wide Web a Medium for Collaborative, 
Evolutionary Design 
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users can react to information provided by the author, this presentation 
model provides little support for evolution. 

The M3 model demonstrates an essential requirement for collaboration and 
evolution for the Web. In M3, users can use the Web to collaborate on projects 
by actively contributing and by learning from all contributors. The evolution 
of content and ideas is now the responsibility of the participating community 
of practice, focusing on the distributed generation of content and the 
reflection upon it. An M3-type model is needed to support the SER model. 
When a wide variety of individuals collaborate in a cooperative forum, the 
unique skills of the members all become valuable resources in making the 
Web resources useful in the current context. The M3 model poses a number of 
technical challenges, including the ability (1) to add to an information space 
without going through an intermediary, (2) to modify the structure of the 
information space, and (3) to modify at least some of the existing information. 

6 Assessment  

6.1 Understanding Pitfalls Associated with Evolutionary Design 

To make evolutionary design a more ubiquitous activity, the forces that 
prohibit or hinder evolution must be understood. Examples of such forces are: 
(i) the resistance to change because it requires learning efforts and may create 
unknown difficulties and pressures, (ii) the problem of premature standards, 
(iii) the difficulties created by installed bases and legacy systems, and (iv) the 
issues of who are the beneficiaries and who has to do the work in order for 
evolution to occur. 

The Oregon Experiment [2] (a housing experiment at the University of 
Oregon instantiating the concept of end user-driven evolution) serves as an 
interesting case study that end user-driven evolution is no guarantee for 
success. The analysis of its unsustainability indicated the following major 
reasons: (1) there was a lack of continuity over time, and (2) professional 
developers and users did not collaborate, so that there was a lack of synergy. 
These findings led us in part to postulate the need for a reseeding phase 
(making evolutionary development more predictable), in which developers 
and users engage in intense collaborations. With design rationale captured, 
communication enhanced, and end user support available, developers have a 
rich source of information to evolve the system in the way users really need it. 
Another interesting source of information for the SER model is Kuhn [26], in 
which general conceptual frameworks can be found to decide when the time 
has come to engage in a reseeding process rather than continue with 
evolutionary growth. 

6.2 Assessment of the SER Model 

The SER model is motivated by how large software systems, such as Emacs, 
Microsoft-Word, Unix, and the X Window System, have evolved over time. In 
such systems, users develop new techniques and extend the functionality of 
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the system to solve problems that were not anticipated by the system's 
authors (following the observation that any artifact should be useful in the 
expected way, but a truly great artifact lends itself to uses the original 
designers never expected). New releases of the system often incorporate ideas 
and code produced by users. In the same way that these software systems are 
extensible by programmers who use them,  

Open-Source Software Systems. The development of the Linux operation 
system [37] provides an interesting existence proof that reliable, useful, and 
usable complex systems can be built in a decentralized “Bazaar style” by 
many [41] rather than in a centralized, “Cathedral style” by a few. The Linux 
development model treats users as co-developers and is currently tested in a 
number of new areas, such as:  (1) Netscape Communicator (for more 
information see http://www.mozilla.org/); (2) Gamelan 
(http://www.gamelan.com; the first community repositories of Java-related 
information allowing  Java developers looking for information about what 
other people are doing with Java; the large number of developers who 
contribute to the Gamelan repository and the number of people who search 
for information in Gamelan provide evidence that the Java community has 
taken a great deal of interest in using community repositories to locate 
information); (3) Educational Object Economy (EOE; 
http://trp.research.apple.com/; the EOE is realized as a collection of Java 
objects (mostly completed applets) designed specifically for education; the 
target users of the EOE are teachers wishing to use new interactive technology 
and developers interested in producing educational software). 

Domain-Oriented Design Environments. DODEs poses a major additional 
challenge to make the SER model feasible and workable: Whereas the people 
in the above mentioned development environments are computationally 
sophisticated and experienced users, DODEs need to be extended by domain 
designers who are neither interested in nor trained in the (low-level) details of 
computational environments. The SER model explores interesting new 
ground between the two extremes of “put all the knowledge in at the 
beginning” and “just provide an empty framework.” Designers are more 
interested in their design task at hand than in maintaining a knowledge base. 
At the same time, important knowledge is produced during daily design 
activities that should be captured.  Rather than expect designers to spend 
extra time and effort to maintain the knowledge base as they design, we 
provide tools to help designers record information quickly and without 
regard for how the information should be integrated with the seed. 
Knowledge-base maintenance is periodically performed during the reseeding 
phases by environment developers and domain designers in a collaborative 
activity. 
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7 Evolutionary Design—Beyond the Boundaries of 
Disciplines 

7.1 Avoid Reinventing the Wheel 

In this article, I have mostly discussed examples from the domain of software 
design. Software design is a new design discipline relative to other more 
established disciplines. Software designers can learn a lot by studying other 
design disciplines such as architectural design, graphic design, information 
design, urban design, engineering design, organizational design, musical 
composition, and writing. For example, the limitations and failures of design 
approaches that rely on directionality, causality, and a strict separation 
between analysis and synthesis have been recognized in architecture for a 
long time [12]. A careful analysis of these failures could have saved software 
engineering the effort expended in finding out that waterfall-type models can 
at best be an impoverished and oversimplified model of real design activities. 
Assessing the successes and failures of other design disciplines does not mean 
that they have to be taken literally (because software artifacts are different 
from other artifacts), but that they can be used as an initial framework for 
software design. 

7.2 Evolutionary Design in Architecture 

Evolutionary design is a concept of equal important in architecture [6]. For 
many arguments and considerations articulated in this article, the words 
“software systems” and “buildings”, and “software designer/programmer” 
and architect are interchangeable. Software design being the much younger 
discipline could learn a lot from design methodologies developed in 
architectural design. Designing complex artifacts from scratch, while often 
considered to be highly desirable to avoid the constraints of dealing with 
existing structures and legacy systems, leads to artifacts which are often 
missing a “quality” that exists in evolving artifacts—as illustrated by cities 
such as Brasilia and Abuja versus cities such as London and Paris. Artifacts 
are embedded in time, and over time many of the determining factors 
influencing a design will change; and because buildings and cities are going 
to be modified many times, they should be designed with unanticipated 
future changes in mind.  

The problems facing both professional groups have initiated at least some 
interest in each other work. Alexander’s work [1] on patterns has found many 
followers in the software design community, specifically in object-oriented 
design [21]. In our own research we have created an “Envisionment and 
Discovery Collaboratory” to explore new computational environments that 
enhance communication between different stakeholders, facilitate shared 
understanding, and assist in the creation of better artifacts by integrating 
physical and computational media for design [4]. By doing so, we attempt to 
integrate the best of both worlds: the dynamic nature of computational media 
and the strength of physical media in allowing people to operate and think 
with tangible objects. 
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7.3 DODEs in Architecture 

The concept of DODEs can be applied to many areas, and in our work (in 
close collaborations with professionals from the respective design disciplines), 
we have created DODES for kitchen design [14], lunar habitat design [46], and 
urban design [4]. Design activities embedded in computational environments 
are the best domains for DODEs, because the activities take place within the 
computational environment and the power of DODEs (providing critics, 
linking action and reflection spaces, supporting simulations, etc.) can be most 
successfully and most easily exploited. 

8 Conclusions 

DODEs are software systems that support design activities within a particular 
domain and are built specifically to evolve. DODEs have provided the 
foundations in our research to develop a theoretical and conceptual 
framework for the evolutionary design of complex systems illustrating (i) the 
importance of end user modifiability and end user programming, (ii) the 
capture and retrieval of design rationale, and (iii) the necessity of improved 
communications among different design stakeholders including system 
developers and end users. 
Evolution of complex systems is a ubiquitous phenomenon. This is true in the 
physical domain, where, for example, artificial cities such as Brasilia are 
missing essential ingredients from natural cities such as London or Paris. 
“Natural” cities gain essential ingredients through their evolution—designers 
of “artificial” cities are unable to anticipate and create these ingredients. It is 
equally true for software systems for the reasons argued in this paper. A 
challenge for the future is to make (software) designers aware of essential 
concepts that originated and were explored in evolution, such as ontogeny, 
phylogeny, and punctuated equilibrium. Even though we are convinced that 
models from biology may be more relevant to future software systems than 
models from mathematics, we also have to be cautious: to follow an 
evolutionary approach in software design successfully does not imply that 
concepts from biological evolution should be mimicked literally, but rather 
they need to be reinterpreted in the domain of software design [5]. 
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