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Complex Adaptive Systems in the Behavioral and Social Sciences 

Roy J. Eidelson 
Bala Cynwyd, Pennsylvania 

This article examines applications of complexity theory within the behavioral and 
social sciences. Specific attention is given to the fundamental characteristics of 
complex adaptive systems (CAS)--such as individuals, groups, and societies-- 
including the underlying structure of CAS, the internal dynamics of evolving CAS, and 
how CAS respond to their environment. Examples drawn from psychology, sociology, 
economics, and political science include attitude formation, majority-minority rela- 
tions, social networks, family systems, psychotherapy, norm formation, organizational 
development, coalition formation, economic instabilities, urban development, the 
electoral process, political transitions, international relations, social movements, drug 
policy, and criminal behavior. The discussion also addresses the obstacles to implement- 
ing the CAS perspective in the behavioral and social sciences and implications for 
research methodology. 

Over the past decade, investigators in many 
fields have increasingly directed their attention 
toward the dynamic processes and global 
pattems that emerge from the collective interac- 
tions of a system's individual components (e.g., 
Cowan, Pines, & Meltzer, 1994; Holland, 1995). 
Using theoretical models and research strategies 
that focus on nonlinear effects and temporal 
change, complexity theory researchers have 
discovered that a system's evolution and behav- 
ior often defy many commonly held assump- 
tions about the world. For example, their 
findings reveal that randomness and determin- 
ism often coexist, that the whole cannot always 
be understood by reducing it to simpler parts, 
that instability is commonplace, and that change 
is frequently abrupt and discontinuous (e.g., 
Casti, 1994). 

Although most of the principles of complex- 
ity theory have originated in the physical and 
natural sciences, Gell-Mann (1995) is among 
those who see the potential for a much broader 
impact: "Even more exciting is the possibility 
of useful contributions to the life sciences, the 
social and behavioral sciences, and even matters 
of policy for human society" (p. 322). Indeed, 
many areas of the behavioral and social sciences 
have already attracted the attention of complex- 
ity investigators; among these fields are attitude 
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formation, majority-minority relations, social 
networks, family systems, psychotherapy, norm 
formation, organizational development, coali- 
tion formation, economic instabilities, urban 
development, the electoral process, political 
transitions, intemational relations, social move- 
ments, drug policy, and criminal behavior. 

But despite the enthusiasm of its interdisciplin- 
ary proponents, the study of nonlinear dynami- 
cal systems has thus far failed to generate 
widespread interest and application within the 
community of behavioral and social scientists. A 
number of interrelated factors have contributed 
to this situation. First, there is currently much 
confusion over the concepts and definitions 
central to this relatively new area of scientific 
inquiry. The term complexity itself is burdened 
with a multitude of different technical meanings, 
including the amount of thermodynamic entropy 
in a system, the degree to which information is 
shared by a system's components, and the 
diversity displayed by the hierarchical levels of 
a system (Horgan, 1995). When researchers in 
diverse fields use their own particular transla- 
tions of fundamental terminology, the resultant 
"interdisciplinary Tower of Babel" (Scott, 
1991) serves only to further muddy the scientific 
waters. Vague distinctions between rigorous and 
metaphorical implementations, such as with the 
notion of chaos, also beset complexity theory at 
the present time (e.g., Abraham, 1995; Barton, 
1994). 

Certain basic assumptions in the social sci- 
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ences create another obstacle to broader applica- 
tion of complexity models in these disciplines. 
Heylighen and Campbell (1995) have termed 
one of these assumptions methodological indi- 
vidualism, which they described as the view that 
"all social processes are to be explained by laws 
of individual behavior, that social systems have 
no separate ontological reality, and that all 
references to social systems are merely conve- 
nient summaries for patterns of individual 
behavior" (p. 2). Similarly, Leydesdorff (1993) 
noted that in most approaches to modern 
sociology "social change has to be explained in 
terms of, or at least with reference to, individual 
human impact" (p. 331). In sharp contrast, 
Cowan (1994) raised the possibility that "soci- 
etal behavior cannot be adequately described by 
any practically achievable integration across the 
behavior of individuals" (p. 4). 

A second pervasive assumption in the behav- 
ioral and social sciences is that human systems 
are driven toward a stable equilibrium, and that 
only one such equilibrium-state exists for a 
given system. The presence of unstable dynam- 
ics is interpreted as being a consequence of 
"social disorganization, faulty design, malfunc- 
tioning or deviancy" (Young, 1991, p. 292). 
Such a perspective inevitably minimizes the 
recognition of and significance accorded to 
self-organized, far-from-equilibrium dynamical 
systems--the very heart of the complex-systems 
perspective. 

It is not surprising that efforts to adopt a new 
paradigm for studying individuals and societies, 
such as that provided by complexity theory, 
have met with resistance (e.g., Kuhn, 1970). 
Such conflict, however, can ultimately prove 
constructive. As Kac (1969) noted, the main role 
of competing models is twofold--to polarize 
thinking and to pose sharp questions. However, 
because there is not yet a "unified theory of 
complex systems" (Horgan, 1995), there ap- 
pears to be the predictable polarization of sides, 
but not an organized set of definitive, testable 
propositions for researchers to evaluate. 

At this point, then, it is important for experts 
in the behavioral and social science disciplines 
without allegiance to complexity theory to give 
careful consideration to this growing field and 
determine whether and where its perspective 
may be useful for them. Such a step is clearly 
more modest than constructing (or evaluating) a 
unified theory of complex systems, but it may 

well serve to establish the groundwork for such 
an undertaking. As a contribution to the process, 
this paper offers an overview of one particular 
arena in the realm of complexity theory-- 
complex adaptive systems (CAS). Throughout 
the discussion that follows, links are made 
between key concepts and theoretical and 
empirical work by investigators in the fields of 
psychology, sociology, economics, and political 
science. 

What, then, is a complex adaptive system? 
Most generally, a CAS is a large collection of 
diverse parts interconnected in a hierarchical 
manner such that organization persists or grows 
over time without centralized control. The brain 
(e.g., Haken, 1996; Kelso, 1995), the immune 
system (e.g., Bremermann, 1994; Holland, 
1995; Varela, Sanchez-Leighton, & Coutinho, 
1992), an ant colony (e.g., Kelly, 1994; Sole, 
Miramontes, & Goodwin, 1993), and human 
society (e.g., Mainzer, 1993; Weidlich & Haag, 
1983) are often presented as examples. 

Through a dynamical, continuously unfolding 
process, individual units within the system 
actively (but imperfectly) gather information 
from neighboring units and from the external 
environment. This information is subjected to 
local internal rules, and responses are formu- 
lated; these responses then work their way 
through the web of interconnected components. 
Within the CAS, competition operates to main- 
tain or strengthen certain properties while 
constraining or eliminating others. Entirely new 
properties can also emerge spontaneously and 
unexpectedly. Configured in this manner, the 
complex adaptive system is poised for potential 
change and adaptation either through alteration 
of its rules, connections, and responses or 
through modification of the external environ- 
ment. In fact, the external stimulus impacting a 
CAS is often one or more other complex 
adaptive systems. The resulting coevolution is 
itself an extremely complicated process. 

Given the breadth of the topic, the framework 
for this paper is necessarily arbitrary and 
incomplete. Nevertheless, four important sub- 
ject areas have been selected for particular 
attention: (a) the principles underlying the 
structure of complex adaptive systems; that is, 
how CAS are put together; (b) the evolution of 
CAS over time, with a focus on self- 
organization and non-linear change; (c) the 
relationship between the complex adaptive 
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system and its environment, including adapta- 
tion and coevolution; and (d) an analysis of the 
theoretical and empirical issues central to 
effectively evaluating or implementing the CAS 
paradigm in the behavioral and social sciences. 

The Underlying Structure of  CAS 

Hierarchical Arrangements With 
Distributed Control 

The numerous and diverse interacting units 
that constitute a complex adaptive system are 
typically arranged in a hierarchical structure. 
Simon (1995) described the arrangement as 
"sets of boxes nesting within sets of boxes" 
(1995, p. 26) through several repetitions. 
Similarly, Holland (1995) has explained that 
new hierarchical levels are created whenever 
individual units, or agents, are aggregated. 
Indeed, he views this process of aggregation as 
one of the most basic elements of complex 
adaptive systems. In turn, each aggregate can 
connect with other aggregates to form meta- 
agents, which can then combine to form 
meta-metaagents, and so on. In this way, the 
aggregation of business finns forms an economy, 
the combination of antibodies creates an im- 
mune system, and a network of neurons forms 
the nervous system. Simon (1995) has noted, 
however, that some aggregations, such as 
human society, involve an especially complex 
network structure because each agent may 
belong within a number of different boxes at the 
same hierarchical level (e.g., an individual may 
simultaneously be a member of a family, a 
professional organization, and a therapy group). 

Each component part in the CAS is relatively 
autonomous in function and generally capable 
of individualized responses to local events (e.g., 
Holland, 1992, 1994; Kelly, 1994; Langton, 
1995). This phenomenon is illustrated, for 
example, in the connectionism of neural net- 
works (parallel distributed processing systems 
with applications ranging from financial-market 
prediction to patient classification). Rather than 
relying on a central processing unit as most 
supercomputers do, input information in a 
neural network is only exchanged locally among 
neighboring nodes. Through summation pro- 
cesses based on nonlinear threshold functions, 
the actions of interacting components produce 
the network's response even without the imposi- 

tion of any overarching organization (Tryon, 
1995). 

Freeman's (1991, 1995) neurophysiology re- 
search offers intriguing evidence that the brain 
itself from which neural networks derive their 
inspiration---demonstrates distributed control. 
Whereas the individual neuron's membrane 
provides it with considerable local autonomy, 
each neuron's activity impacts the other neurons 
in its vicinity. These interactive masses are 
simultaneously and reciprocally linked to other 
local and more distant neural masses. As an 
example, Freeman reports data indicating that 
every neuron in a rat's olfactory bulb responds 
to the stimulation provided by a discriminable 
odor. He concludes that "the neural information 
that correlates with the behavior of animals 
exists in the cooperative activity of many 
millions of neurons and not in the favored few" 
(1995, p. 22). 

Social systems also demonstrate decentral- 
ized control in a variety of ways. In animals, for 
example, the "intelligent" behavior of a swarm 
of bees selecting a new hive site or a colony of 
ants locating a food source unfolds despite the 
absence of an executive agent (Kelly, 1994). 
Similarly, Huberman and Hogg (1995) have 
observed that communities of practice-- 
informal networks of people ranging from 
chemists in competing pharmaceutical firms to 
the foreign affairs personnel of adversarial 
countries to gangs in schools and prisons--  
develop interaction structures that do not rely on 
central controls. Indeed, the investigators' math- 
ematical models indicate that dynamical instabili- 
ties in these interaction patterns often produce 
spontaneous adaptive realignments among the 
members without the intervention of a central 
planner. 

Regarding human society more broadly, 
Brown (1995) has analyzed the social conven- 
tions that frequently become powerful influ- 
ences on behavior. Forming lines at a banking 
machine or a fast-food drive-through window 
and the unplanned coordinated activity of 
strangers confronted with an emergency situa- 
tion are instances of organization dependent on 
distributed control. In a like manner, Axelrod 
(1986) has concluded that norms often serve as 
mechanisms to coordinate behaviors and regu- 
late conflicts without the intervention of a 
central authority. He has pointed out that 
societal norms in fact often precede the 
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formulation or enactment of laws. Interestingly, 
in computer simulations of the evolution of 
norms under conditions of limited rationality, 
Axelrod found that metanorms, such as the 
expectation that an individual will punish 
someone who fails to punish a norm-violator, 
can play important roles in establishing and 
protecting group norms. 

When efforts are made to impose some degree 
of centralized control on social, political, and 
economic systems, the outcomes are often 
disappointing and unanticipated. Heylighen and 
Campbell (1995), for example, have cited two 
reasons why consolidating the control of an 
organization in a subgroup or individual can be 
problematic. First, important knowledge is 
likely to be farther removed from the local site 
or situation where it is most needed. Second, the 
transfer of information in both directions--is 
highly susceptible to delays and degradation. 
Furthermore, they noted that "the capacity of 
the control system for anticipation, which 
normally compensates for the loss of informa- 
tion, is notably poor for social systems, which 
are inherently difficult to predict" (p. 16). 
Goerner (1994) has echoed these admonitions, 
and emphasized that dominator hierarchies, 
characterized by the upward flow of information 
and the downward exercise of control, can stifle 
creativity and the development of greater 
efficiencies. 

Jacobs' (1984) analysis of the problems 
encountered by large nation-states governing 
their cities through centralized control and 
centralized problem-solving also supports these 
conclusions. In particular, she argued that 
"national or imperial currencies give faulty and 
destructive feedback to city economies and that 
this in turn leads to profound structural eco- 
nomic flaws, some of which cannot be overcome 
no matter how hard we try" (p. 158). Jacobs has 
suggested that broad national economic policies 
are flawed because they ignore the unique 
features and needs of individual cities and 
thereby interfere with locally informed efforts at 
self-correction and stable growth. She has 
compared this common circumstance to an 
imaginary one in which an elephant, three 
sheep, two puppy dogs, and a rabbit are all 
connected to the same brain-stem breathing 
center--not all are likely to survive. Among the 
real-life examples Jacobs has provided is the 
Volta Dam in Ghana, which displaced 80,000 

villagers; she stresses that the dam was economi- 
cally pointless because there simply were no 
solvent city markets or industries to use its 
power. 

It is important to note, however, that the 
distributed control of CAS is not without its 
potential drawbacks. Hardin's (1968) "tragedy 
of the commons" describes one of them very 
effectively. Imagine a situation in which a 
common resource (e.g., land for grazing cattle) 
is available for shared use by all members of a 
community (e.g., a group of herdsmen). As each 
individual increasingly uses the commons in an 
effort to maximize his own benefit, the collec- 
tive consequence may well be the destruction of 
the resource from excessive exploitation. In 
short, localizing control at the level of each 
agent or component can prove catastrophic if 
competing demands go unrecognized or unre- 
solved. More speculatively, multiple personality 
disorder may be an even more striking instance 
in which distributed control, in this case within 
the human brain, produces extraordinary out- 
comes (e.g., Putnam, 1989). 

Interconnections Among CAS Components 

Another important structural feature of a 
complex adaptive system is the nature of the 
connections among its components. Simon 
(1981) described the typical configuration as 
"near decomposability." That is, intracompo- 
nent linkages tend to be stronger than intercom- 
ponent linkages, and neighboring components 
tend to have stronger connections than distant 
components. Huberman (1992) explained that 
this method of organization allows for "an 
effective isolation of a given level from both the 
rapid fluctuations of the lower echelons and the 
quasi-static constraints of the higher ones" 
(p. 129). 

Both the absolute number of connections 
between units and the strength (or frequency) of 
these linkages can play consequential roles. 
Kelly (1994) has speculated that in nature 
connectance is conserved by a trade-off between 
these two particular measures; changes in one 
dimension will likely lead to compensating 
changes in the other. Similarly, interaction 
patterns among members of an organization, 
such as coworkers, typically range from infre- 
quent contacts with all fellow members to very 
frequent contacts with just a few colleagues 
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(Huberman & Hogg, 1995). Adding the dimen- 
sion of linkage quality in his discussion of social 
systems, Merry (1995) also has emphasized the 
importance of matching the degree of interdepen- 
dence among individuals with the quality of 
their relationships. He has hypothesized, for 
example, that when interdependence is high and 
relationship quality is low, the participants (e.g., 
work-team members or nations) are likely to 
endure an uncertain period of conflict and crisis. 

A related issue is whether there is an ideal 
level of connectivity within a CAS. On the one 
hand, inadequate connections can make it 
difficult for the system to coordinate adaptive 
responses to internal or external changes. For 
example, if messages fail to reach their targeted 
destinations in a timely manner, disruptive 
influences may attain a secure foothold before 
countervailing forces can be activated. In this 
regard, Varela (1995; Varela, Sanchez-Leighton, 
& Coutinho, 1992) has proposed that both 
autoimmune diseases and drug addiciton are 
disturbances caused by insufficient connected- 
ness throughout the afflicted system. From his 
perspective, in the first instance the body's 
immune system suffers from inadequate internal 
regulation, causing vaccination to be ineffective 
as a treatment; in the second case, healthy 
connections between the addicts and the larger 
society have been severed. 

Other investigators, however, have discov- 
ered that excessive connectivity can also endan- 
ger a system. Kauffman (1993) investigated this 
phenomenon using randomly assembled Bool- 
ean networks in his computer simulations of 
genetic systems. In such arrangements, each 
element's current binary "on/off' '  state is 
regulated by its logical switching rule and the 
states of specific neighboring elements at the 
preceding time interval. For example, a particu- 
lar node may be on only if all surrounding nodes 
were previously off. Kauffman discovered that 
his networks suffered paralysis when the num- 
ber of connections per node exceeded a 
threshold value, which suggests that an indi- 
vidual component of a CAS may simply be 
unable to devise an adaptive response when 
faced with an overload of conflicting inputs. 

In reviewing Kauffman's findings, Kelly 
(1994) concluded that system evolution can 
proceed most rapidly by adding members while 
holding the average number of links per node 
constant. However, there is evidence from other 

areas suggesting that adding members to a 
system can prove costly. Based on computer 
simulations of information-processing organiza- 
tions, Miller (1995) has noted that additional 
nodes (e.g., workers) can be a mixed blessing. 
Although they may potentially increase the 
organization's processing power, they also 
extend and elaborate the pathways through 
which the information must flow. Similarly, in 
an exploration of simulated ecosystems, May 
(1973) found that combining too many different 
species tended to destabilize the system and 
produce higher extinction rates. Interestingly, 
May hypothesizes that diversity and stability 
can perhaps coexist most comfortably when 
subsystems develop to control cross-species 
interaction (i.e., by limiting connections per 
species). 

Excessive numbers can also prove to be a 
liability when a group is faced with a social 
dilemma requiting collective action (e.g., envi- 
ronmental protection). Computer simulations 
reveal that overall cooperation tends to be 
unsustainable when group size exceeds a critical 
threshold (Glance & Huberman, 1994; Huber- 
man & Glance, 1993). As the authors explained, 
beyond that threshold "the likelihood of bad 
consequences from an individual's defection 
becomes so small, whereas the potential gain 
stays so large, that the disincentive to defect 
vanishes" (Glance & Huberman, 1994, p. 78). 
They noted, however, that creating subsystems 
within an organization may produce "pockets of 
collaboration" that can spread throughout the 
entire system. 

Flexibility, Redundancy, and Error 
Management 

Within a complex adaptive system, the 
weblike network of interconnections can also 
enhance error management capabilities. In this 
regard, von Neumann (1966) observed that the 
structures of both natural and human-made 
automata are greatly influenced by the precau- 
tionary arrangements designed to minimize the 
likelihood that any failure will prove lethal. The 
CAS typically limits system-threatening mis- 
takes in several ways. First, its hierarchical 
"boxes-in-boxes" structure often confines the 
tipples caused by any single error. Second, an 
elaborate network of feedback loops reduces the 
likelihood of a similar mistake being repeated. 
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And third, the system incorporates a significant 
degree of redundancy in its components so that 
"replacement" parts or pathways are frequently 
available when a failure does occur (e.g., Kelly, 
1994). 

In examining this last phenomenon, Minsky 
(1986, 1995; Minsky & Papert, 1987) has 
explored how a person learns which methods are 
generally most effective for solving particular 
problems. He has stressed that people are more 
adaptable than computers because in fact they 
usually know several ways to accomplish the 
same thing. Whereas the typical computer 
program is paralyzed by any error of any size, 
the brain almost always finds some alternative 
method to tackle a problem when one particular 
approach has proven fruitless. By continuously 
devising new, seemingly redundant ways to 
accomplish currently manageable tasks a person 
is better prepared if or when the old ways cease 
to work. Indeed, Minsky (1995) described the 
human brain as, basically, a "collection of 
kludges" (p. 158) in which bits of machinery are 
added whenever necessary to meet a specific 
need without an underlying global plan. He 
suggested that, instead of having a few underly- 
ing basic principles, the brain is "a great 
jury-rigged combination of many gadgets to do 
different things, with additional gadgets to 
correct their deficiencies, and yet more accesso- 
ries to intercept their various bugs and undesir- 
able interactions" (p. 159). 

Similarly, Holland (1994) has explained that 
if one of the components of a CAS is removed or 
disabled, the others often successfully reorga- 
nize themselves and compensate for the loss 
with changes that may even create niches where 
none had previously existed. In this regard, 
Kelso (1995) has reported experimental evi- 
dence that a variety of human behavior patterns 
reveal "invariance of function" even when key 
connections among component parts are recon- 
figured. As a specific instance, he and his 
colleagues (Kelso, Tuller, Vatikiotis-Bateson, & 
Fowler, 1984) devised a prosthesis so that they 
could instantaneously perturb a volunteer's jaw 
movements during speech. They discovered 
that, without any practice whatsoever, the 
participant's lips or tongue would spontaneously 
compensate when the jaw was suddently dis- 
abled and thereby enable the vocalization of the 
intended sounds. 

Such findings highlight the remarkable flex- 

ibility inherent in a system composed of many 
smaller, independently functional units. Kelly 
(1994) has advised, however, that the network 
structure of a CAS also places constraints on its 
malleability and the range of adaptations 
accessible to it. The CAS can change only by 
means of a step-by-step process operating 
through its component parts; modification of 
these parts, in turn, is limited by the structure of 
their own subcomponents, and so on. As a result, 
change occurs in discontinuous steps rather than 
continuously. Goodwin (1994a, 1994b) has 
described similar limitations when discussing 
the contrasting roles of natural selection and 
morphogenesis in the evolution of species. 
Although natural selection may underlie the 
persistence of particular forms, it does not aid in 
our understanding of why these forms ever 
existed in the first place. Goodwin has stressed 
that issues of morphology alone place signifi- 
cant limitations on possible biological forms, 
long before survival of the fittest enters into the 
equation. In short, some complex systems may 
not exist in a particular form because the parts 
simply cannot be assembled that way. 

The Internal Dynamics of  the Evolving 
CAS 

Self-Organization 

A hallmark of complex adaptive systems is 
their capacity for self-organization. Barton 
(1994) describes self-organization as "a process 
by which a structure or pattern emerges in an 
open system without specifications from the 
outside environment" (p. 7). Similarly, Farmer 
(1995) depicts self-organization as the way CAS 
"naturally progress from chaotic, disorganized, 
undifferentiated, independent states to orga- 
nized, highly differentiated, and highly interde- 
pendent states" (p. 368). Central to the phenom- 
enon is the interplay between constancy and 
change as the system maintains its essential 
identity while undergoing self-induced, nonlin- 
ear transformations. 

Many of the major principles of self- 
organization have emerged from Prigogine's 
work on far-from-equilibrium thermodynamics 
(e.g., Nicolis & Prigogine, 1977; Prigogine & 
Stengers, 1984) and from Haken's theory of 
synergetics (e.g., Haken, 1983a, 1983b, 1988). 
According to the latter's perspective, the coUec- 
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tive interactions among a system's individual 
components produce macroscopic properties 
referred to as order parameters. These order 
parameters, such as the roll patterns of fluids and 
the light waves of lasers, thereafter "enslave" 
the actions of the elementary units in a top-down 
manner. At the same time, the constituent parts 
continue to operate in a bottom-up fashion to 
support and reinforce the order parameters. 
Once established, this pattern of circular causal- 
ity serves to stabilize the CAS, unless perturbed 
by external influences. 

Order parameters have been used to describe 
the important features of a variety of CAS in the 
behavioral and social sciences. In regard to 
human cognition, for example, Stadler and 
Kruse (1995) have identified meaning as an 
order parameter for high-level brain processes; 
in many experiments, meaning serves as the 
organizational basis for the memory of complex 
verbal chains. Within the economic realm, a 
business firm's profits can act as an order 
parameter for the company's diverse activities; 
in the larger society, the difference in the 
number of citizens supporting two opposing 
solutions can operate as an order parameter for 
the community's response to an important 
problem (Wishcert & Wunderlin, 1993). Finally, 
Haken (1993, 1994) speculates that all of the 
following can emerge as order parameters 
within a particular CAS: language, national 
character, ritual, form of government, public 
opinion, corporate identity, and social climate. 

Using simulation techniques, investigators 
have documented self-organizing transforma- 
tions across a broad spectrum of social and 
economic systems. Schelling (1978), for ex- 
ample, developed a self-forming neighborhood 
model to explain the collective impact of 
individual preferences in regard to community 
racial composition. He devised a hypothetical 
checkerboard neighborhood in which each 
resident was assigned to a square, and his or her 
degree of discontent was based solely on the 
number of same-colored versus different- 
colored neighbors occupying the immediately 
adjacent squares. Importantly, whenever a per- 
son moved from a current site to a vacant 
square, the color ratios were altered in both the 
abandoned neighborhood and the new one. As 
each resident sought out a square of content- 
ment, individual actions combined to create 
global patterns. In these simulations, Schelling 

discovered that patterns of segregation emerged 
that frequently overstated the actual minimal 
preferences of the individuals involved. That is, 
even a limited desire to avoid being part of a 
small minority tended to alter a reasonably well 
integrated neighborhood and create a highly 
segregated one instead. 

Latane and his colleagues have examined 
similar emergent phenomena in the processes 
underlying group attitude change (e.g., Nowak, 
Szamrej, & Latane, 1990). Based on the view 
that important attitudes act as categories rather 
than dimensions (Latane & Nowak, 1994), 
Latane, Nowak, and Liu (1994) designed 
computer simulations in which each agent 
maintained an opinion as long as the balance of 
social influence pressures from other agents did 
not favor the opposing point of view. In such a 
model, the combined pressures to switch opin- 
ions and pressures to stay with one's opinion 
(which include the strength of the agent's own 
opinion) are nonlinear in their impact; incremen- 
tal changes in influence produce no effect until 
they reach a sufficient level, at which point the 
individual reverses his or her position. 

Using a square grid in which each randomly 
assigned cell corresponded to an individual with 
either of two opposing attitudes, Latane, Nowak, 
and Liu (1994) found that over time the 
simulations produced significant changes from 
the initial configurations in reference to two 
order parameters. In regard to the first param- 
e t e r - t h e  polarization of opinions--incomplete 
polarization emerged; that is, the number of 
minority-view members diminished but did not 
disappear entirely. As for the second global 
variable--the clustering of opinions---cluster- 
ing increased so that agents with shared 
opinions became more spatially segregated from 
those with the opposing viewpoint. Latane and 
Nowak (1994) describe the resulting self- 
organized equilibrium as one of "clustered 
groups in which minority members are shielded 
from the prevailing majority influence, finding 
themselves in local neighborhoods wherein their 
view is in the majority" (p. 244). They further 
suggest that strong-willed people around the 
edge of a minority-cluster (i.e., those least likely 
to change to the majority viewpoint) can enable 
the less committed within to actually believe 
they are part of a majority. 

As another example, Glance and Huberman 
(1994) examined how and whether group 
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cooperation arises in situations requiring collec- 
tive action. They discovered that their systems 
tended to evolve toward either of two stable but 
contrasting conditions: widespread defection 
among the agents or widespread cooperation. 
Regardless of where the group started, random 
perturbations caused by the agents' uncertainties 
regarding each other's behaviors and inclina- 
tions eventually caused the system to move 
rapidly to the more stable of these two states. 
Glance and Huberman have interpreted their 
findings as indicating that a cooperative resolu- 
tion is most likely when a particular social group 
is relatively small, hetergeneous, and focuses on 
long-term consequences. 

Self-organizing patterns in the economic 
arena have also been investigated (e.g., Allen, 
1982; Krugman, 1994). Allen (1982), for 
example, analyzed the evolution of urban 
centers. The decision an individual, family, or 
business makes in selecting a home site is 
influenced by a multitude of interacting, nonlin- 
ear factors. These include the availability and 
quality of local employment and housing, and 
the competing opportunities offered by neighbor- 
ing communities. Such selections need not be 
permanent. Depending on the relative costs 
involved, agents may choose to relocate as 
circumstances change with the passage of time. 
The collective impact of many such individual 
decisions became apparent in Allen's computer 
simulations. Over time an urbanization process 
unfolded as an initial network of equally 
populated cells transformed itself into a geo- 
graphical space with a few high-density centers 
surrounded by satellite cities and more distant 
low-density cells. 

Positive Feedback 

The course of self-organization in complex 
adaptive systems is often influenced by positive 
feedback. Rather than relying on negative 
feedback controls only (e.g., the thermostat that 
keeps temperature within a narrow range), the 
CAS uses the nonlinear interactions among its 
parts to generate snowballing effects. The 
dynamics of the positive feedback cycle are 
self-reinforcing, and potentially amplify the 
impact of a small change or adjustment. Of 
course, the runaway effects do not always 
appear to be constructive (such as a chain 
reaction of stock market crashes around the 

world). It should be kept in mind, however, that 
successful self-organization for a particular 
system as a whole can produce undesirable 
consequences for some of its individual parts 
and for other CAS. 

A common instance of positive feedback is 
the competency trap (March, 1994). In this 
particular situation, successful learning drives 
an individual, organization, or society to a stable 
but suboptimal solution. For example, once an 
individual has developed a skill and derived 
positive outcomes from its use, he or she will 
have little incentive to learn an alternative 
method, even if it would potentially provide 
superior returns. Such a change not only would 
entail the costs in time and energy of learning a 
new approach, but could also expose the person 
to a diminished success rate until proficiency 
improves. Furthermore, with each successful 
implementation of the old skill, the reinforce- 
ment increases the disincentive to switch. 

Arthur's (1988, 1990) analysis of increasing 
returns (i.e., positive feedback) in economic 
systems is also instructive. Conventional eco- 
nomic theory emphasizes the role of diminish- 
ing returns (negative feedback) in establishing a 
single and best equilibrium for prices and 
market shares. Arthur has pointed out, however, 
that there are many parts of the economy, 
especially those driven by technological innova- 
tion, in which positive feedback dominates. In 
these situations, expensive initial investments in 
research and design are typically followed by 
relatively low incremental production costs. 
When companies compete in such an arena, an 
early sales lead--even if caused by nothing 
more than a lucky break--can lead to a 
"locked-in" situation as the small advantage 
feeds on itself and ultimately eliminates the 
competition. 

The history of the VHS-Beta battle in the 
VCR industry is a prime example of this 
phenomenon (Arthur, 1990). Despite the pos- 
sible technical superiority of the Beta system, 
once the VHS system gained a slight edge in 
market share, the video outlets responded by 
stocking more VHS-format tapes, which further 
served to make VHS the recorder of choice 
among new consumers, and so on. Arthur 
suggests that a similar positive feedback loop 
can determine the location of a country's 
economic centers. If business enterprises benefit 
from being in close proximity to other firms, 
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then a self-reinforcing process will lead to 
industrial concentration in particular areas. 
These areas need not even have any inherent 
merit over geographic regions that ultimately 
fail to thrive. 

Intrinsic Dynamics 

The self-organization process does not inevi- 
tably lead the CAS to a single fixed or static 
state. Indeed, many theorists and investigators 
have concluded that complex adaptive systems 
often exhibit internally generated fluctuations 
beneath their macroscopic stability. For ex- 
ample, Kelso et al. (1995) have reported that the 
dynamics of brain functioning in general and 
visual perception in particular are intrinsically 
metastable. In one study using a computer- 
screen depiction of the classic Necker cube, 
participants were asked to press a mouse button 
whenever their perception of the figure changed. 
The investigators found "bursts of switching.. .  
interspersed with prolonged periods during 
which no perceptual Change takes place" (Kelso 
et al., 1995, p. 75). 

From the synergetics perspective, the multista- 
bility produced by such oscillations is the means 
by which the brain resolves ambiguity because it 
cannot recognize both interpretations of a 
percept simultaneously (Haken, 1995). In this 
regard, Kruse and Stadler (1993) conducted 
several studies that revealed contextual and 
semantic influences on participants' perceptual 
stability when exposed to multistable patterns. 
Similarly, Wildgen (1995) has documented 
numerous instances in which linguistic ambigu- 
ity (e.g., the phrase "some more convincing 
evidence") is tied to multistability in language 
perception. Stadler and Kruse (1995) have 
concluded that multistability in perception is 
actually quite common, and that higher cogni- 
tive processes in the form of meaning contribute 
to the intermittent or permanent resolution of 
these ambiguities. 

In another area, Vallacher and his colleagues 
(e.g., Vallacher & Nowak, 1994; Vallacher, 
Nowak, & Kaufman, 1994) have investigated 
the intrinsic dynamics of social judgment. Their 
findings contradict the commonly held assump- 
tion that evaluation of another person, once 
formed, changes only in response to external 
influences such as new information or pressure 
from others. The researchers used a mouse 

paradigm in which a participant's positioning of 
a cursor in relation to a fixed point on a 
computer screen represented his or her moment- 
to-moment feelings about an acquaintance who 
was perceived either positively, negatively, or 
ambivalently. While participants in the positive 
and negative valence conditions gravitated over 
the 2-minute experimental session toward a 
position a fixed distance from the target point 
(the former-selecting a close location and the 
latter a distant one), those in the mixed-valence 
condition exhibited irregular oscillations in 
cursor positioning, suggesting that their evalua- 
tive judgments never stabilized on one fixed 
point. 

Finally, the analytical and simulation work of 
Youssefmir and Huberman (1995) highlight the 
intrinsic dynamics of large multiagent systems 
such as human society. The investigators 
designed models in which agents with incom- 
plete information about the environment, or 
bounded rationality (e.g., Arrow, 1991; Arthur, 
1994; Sargent, 1993; Simon, 1957), competed 
for limited resources. In efforts to optimize their 
individual outcomes, the adaptive agents were 
capable of switching strategies as the entire 
system continued to evolve. Under these general 
conditions, Youssefmir and Huberman found 
that even when resource use reached a stable 
equilibrium state for the system as a whole, the 
agents continued to switch strategies in pursuit 
of greater individual returns. These persistent 
intemal fluctuations intermittently produced 
bursts of momentary instability and volatility 
before relaxing to equilibrium once again. 

Bifurcations 

Although a complex adaptive system gener- 
ates its own patterned evolution through intrin- 
sic dynamics and self-organizational tendencies, 
the CAS can also exhibit abrupt, nonlinear, and 
often dramatic transformations from one refer- 
ence state to a qualitatively different one when 
sufficiently perturbed by internal or extemal 
forces. From the dynamical systems perspec- 
tive, this discontinuity is called a bifurcation or 
phase transition (e.g., Prigogine & Stengers, 
1984) and has long been recognized in physical 
systems (e.g., Nicolis & Prigogine, 1989). 
Examples include a substance's change from 
liquid to solid (in response to the lowering of 
temperature), the thermal convection patterns of 
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Benard cells (caused by an increase in tempera- 
ture differential), and an earthquake or volcanic 
eruption (due to increasing subsurface stresses). 
A more readily observable instance is the 
sudden shift in a horse's gait as with increasing 
speed it switches from walking to trotting to 
galloping (Goerner, 1995). 

A critical variable measuring the forces that 
push the system toward bifurcation is often 
referred to as a control parameter (e.g., Haken 
1983b; Nicolis & Prigogine, 1989; Nowak & 
Lewenstein, 1994). In general, a bifurcation 
occurs at a specific point along the continuum of 
this parameter's values. Depending on the 
particular system under consideration, the con- 
trol parameter could be, for example, the 
temperature differential between two locations, 
the concentration of a chemical in a solution, the 
number of members in an organization, or the 
degree of social pressure applied to an indi- 
vidual. For parameter values below the bifurca- 
tion point, the system will typically remain 
relatively stable; that is, small changes in the 
control parameter will have little impact on the 
system's behavior. When the control parameter 
approaches the bifurcation point, however, the 
system becomes increasingly unstable and 
begins to display critical fluctuations (Haken, 
1983a, 1983b). At the critical value itself, the 
system reorganizes and assumes a significantly 
different form. 

There are many different types of bifurcations 
(Abraham, 1995; Nowak & Lewenstein, 1994). 
In what is perhaps the simplest case, the system 
has only one stable state available to it once 
beyond the bifurcation point. By comparison, 
with the pitchfork bifurcation the system selects 
either of two divergent paths at the point of 
bifurcation. Although incremental change in the 
control parameter's values pushes the system 
toward bifurcation, at the critical point the 
slightest random perturbation or intentional 
influence may determine which particular course 
is chosen. Both alternatives lead to renewed 
stability, although a secondary bifurcation point 
may subsequently be reached. Prigogine and 
Stengers (1984) described this nonlinear process 
as "a delicate interplay between chance and 
necessity, between fluctuations and determinis- 
tic laws. We expect that near a bifurcation, 
fluctuations or random elements would play an 
important role, while between bifurcations the 

deterministic aspects would become dominant" 
(p. 176). 

This notion of discontinuous change and 
bifurcation has received both theoretical and 
empirical attention from a variety of behavioral 
and social scientists. For example, Merry (1995) 
has suggested as a general proposition that the 
successive stages of human history alternate 
between periods of relative stability and predict- 
ability on the one hand, and sharply contrasting 
intervals of instability and extreme sensitivity to 
small chance events on the other. Shermer 
(1995) has referred to this latter process as 
contingent necessity and provided an extensive 
cataloging of fluctuations or triggers of change 
that may precipitate a society's abrupt reorgani- 
zation; they include inventions, discoveries, 
famine, invasions, population explosions, and 
natural disasters. Similarly, Wiedlich and Haag 
(1983) have stated that even a few influential 
individuals can determine a society's direction 
by triggering a revolution, but only if their 
actions come at an opportune time. 

Within the realm of political science, Lust- 
ick's (1993) model of state-building and state- 
contraction provides a detailed example of  
discontinuous change in a CAS. Comparing the 
historical relationships between Britain and 
Ireland and between France and Algeria with the 
current turmoil surrounding Israel and the West 
Bank-Gaza territories, he has proposed that the 
political institutionalization of new territories-- 
and the disengagement from them---consistently 
proceeds through three predictable stages: 
struggles over incumbency, conflicts over re- 
gime integrity, and finally contention over 
ideological hegemony. Most noteworthy here 
are the two distinct thresholds that must be 
crossed to move from one stage to the next in 
either direction. Lustick refers to the threshold 
points between stages as "discontinuities in the 
process of institutionalization" and adds that 
"moving from one stage to another entails a 
shift in the order of magnitude of political 
conflict that would surround efforts to change a 
particular institution" (p. 37). In short, these 
thresholds represent bifurcation points which 
abruptly transport the political system to a 
qualitatively different, reorganized state. 

Bifurcations are also common phenomena in 
the economic arena, where the gradual accumu- 
lation of destablizing stresses often leads to 
discontinuities. Jacobs (1984) has provided two 
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examples: (a) the combined toll of rising costs 
and increasingly inadequate facilities inducing a 
growing local business to relocate to another 
city, and (b) rising demand for public transporta- 
tion coupled with only limited capacity for 
additional surface traffic leading to the construc- 
tion of a new subway. Young (1991) has offered 
a somewhat different illustration, suggesting 
that a widening gap between an individual's 
desire for goods and the financial resources to 
acquire them may cause the abrupt adoption of a 
criminal lifestyle. 

Some of Kelso's (1981, 1984, 1995) earliest 
experimental work on bifurcations in human 
behavior involved phase transitions in hand 
movements. Participants were first asked to 
move their index fingers rhythmically back and 
forth in a parallel alignment with each other. 
They were then instructed to progressively 
increase the speed of movement. When the 
speed (i.e., the control parameter) reached a 
critical level, the index fingers involuntarily 
switched from parallel to symmetrical pattern- 
ing. 

Tuller and Kelso (1990) documented a similar 
phenomenon in human speech. When research 
participants repetitively vocalized the syllable 
eep while progressively increasing their speak- 
ing rate (the control parameter), a phase 
transition occurred and subjects spontaneously 
began reciting pee instead. Kelso (1995) also 
has reported more recent findings derived from 
the experimental analysis of magnetic fields and 
spatiotemporal patterning in the brain. He 
concluded that "nonequilibrium phase transi- 
tions offer a new mechanism for the collective 
action of neurons, they provide the brain with a 
switching mechanism, essential for rapidly 
entering and exiting various coherent states. 
Thus phase transitions confer on the brain the 
hallmark of flexibility" (p. 284). 

From a more theoretical perspective, other 
researchers have identified directed discontinu- 
ous transformations as an important factor in 
psychological change. For example, many 
psychotherapists view bifurcation points as 
critical opportunities for positive change (Abra- 
ham, 1995). That is, a client experiencing 
increasing discomfort may be ideally situated to 
discard worn-out, maladaptive behaviors and 
adopt new, more promising ones instead. 
Similarly, in an analysis of academic compe- 
tence in college settings, Torre (1995) has 

emphasized that the educational interventions of 
counselors should induce sufficient tension to 
cause a bifurcation, while not creating so much 
instability as to preclude constructive change. 
Along the same lines, Guastello, Dooley, and 
Goldstein (1995) have noted that facilitators 
attempting to promote organizational change 
must foster an environment in which workers 
unleash their "inherent propensity toward bifur- 
cation" (p. 269). This often involves encourag- 
ing the recognition of discontent and amplifying 
rather than dampening any areas of intraorgani- 
zation disagreement. 

Bifurcation points have also been employed 
in the study of close relationships. Baron, 
Amazeen, and Beek (1994) adopted a dynamical 
systems perspective in their analysis of Lev- 
inger's (1980) ABCDE model of long-term 
dyadic relations. In this five-stage model, Stage 
A refers to attraction and is followed by Stage 
B, building a relationship. Of particular interest 
here is Stage C, which begins at a bifurcation 
point culminating in one of three forms of 
relationship continuation: growing-satisfying, 
placid-static, or unstable-conflicO~ul. Both of 
the latter two forms lead to Stage D---deteriora- 
tion-and then Stage E, ending through separa- 
tion. The growing-satisfying path, on the other 
hand, skips Stage D and instead continues until 
Stage E, ending through death. 

Cusp Catastrophes 

An important subgroup of bifurcations in 
complex adaptive systems are those categorized 
as cusp catastrophes. The general framework of 
catastrophe theory translates discontinuous 
changes into mathematically complex topologi- 
cal forms (e.g., Thom, 1975; Zeeman, 1976, 
1977); the approach has proven controversial 
primarily due to imprecision in some of its 
applications and the overzealousness of some of 
its proponents (Casti, 1994; Guastello, 1995). 
Nevertheless, Casti (1994) has noted that 
catastrophe theory does provide a useful tem- 
plate for understanding many processes. Simi- 
larly, Latane and Nowak (1994) emphasized that 
"despite these criticisms, catastrophe theory 
provides a convenient geometrical description 
of how a continuous function may change into a 
discontinuous one and allows us to predict a 
number of associated phenomena" (p. 229). 

In a cusp catastrophe, the interaction between 
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two control parameters determines whether the 
system experiences gradual or discontinuous 
change. Guastello (1995) has referred to these 
paired parameters as asymmetry and bifurcation 
controls. As long as the value of the bifurcation 
variable remains low, macroscopic system 
change occurs gradually in response to changes 
in the asymmetry parameter. If the bifurcation 
control value is sufficiently high, however, the 
system abruptly destabilizes as the asymmetry 
control crosses a threshold point, jumping from 
one stable state to a qualitatively different stable 
state. 

Tesser and Achee (1994) have proposed that 
this cusp catastrophe model has broad explana- 
tory value for understanding human behavior 
whenever an individual's disposition to act in a 
certain way conflicts with social pressures 
against doing so. They presented romantic 
behavior as an example. When social pressures 
(the bifurcation control) against a young, 
unmarried couple's involvement are minimal, 
dating activities are likely to increase gradually 
as mutual attraction grows (the asymmetry 
control). On the other hand, when social 
pressures act as strong inhibitors, attraction may 
grow with little behavioral manifestation until a 
critical point is reached at which romantic 
behavior abruptly leaps to high levels. 

Latane and Nowak (1994) have used a cusp 
catastrophe model of attitude change (e.g., 
Zeeman, 1976, 1977) to generate the hypothesis 
that attitudes tend to be distributed bimodally 
(i.e., as categories) when an issue is important to 
a group, and tend to be normally distributed 
(i.e., as dimensions) when the issue itself is 
relatively unimportant. Within this framework, 
the importance of the issue to the individual can 
be viewed as the bifurcation control, and the 
degree to which he or she receives negative 
versus positive information regarding the topic 
operates as the asymmetry control. 

For an uninvolving issue, the favorability of 
the individual's attitude should be a smooth, 
continuous function of the valence of the 
information about the topic. If the issue is an 
involving one, however, changes along the 
asymmetry control (i.e., information valence) 
that cross a threshold point should produce a 
dramatic, nonlinear shift in the individual's 
attitude. Furthermore, this region of instability 
should prevent a highly involved person from 
maintaining a noncommittal, "middle-of-the- 

road" attitude on the issue. In two separate 
studies of college students' attitudes toward 
political propositions, and in a reanalysis of 
attitude data collected from U.S. soldiers during 
World War II, Latane and Nowak (1994) found 
strong support for the model's prediction that 
greater involvement with an issue is associated 
with the adoption of more extreme attitudes. 

Another application of the cusp catastrophe to 
a CAS is as a model of organizational change 
(e.g., Bigelow, 1982; Guastello, 1995). In 
Bigelow's conceptualization, organizational prac- 
t i c e - t he  sanctioned activities carded out by the 
organization's members is influenced by two 
control parameters. The bifurcation control is 
the degree of resistance to change, most 
frequently expressed as support for the organiza- 
tion's initial practice. The asymmetry control is 
the amount of pressure for change. 

According to the model, when resistance to 
change is low, increasing pressure to change will 
produce a gradual transition or evolution in 
organizational practice away from the initial 
conditions. On the other hand, if resistance to 
change is high, when growing pressure to 
change reaches a critical threshold, a dramatic, 
revolutionary alteration in organizational prac- 
tice results. Bigelow noted that despite the 
model's limitations and qualitative nature, its 
predictions are consistent with actual accounts 
of organizational process and change. In particu- 
lar, he emphasized that the model provides 
insight into how different developmental paths 
may result from attempts to influence the two 
control parameters. "It  may be possible to 
prevent change from occurring by keeping 
pressure for change low. Smooth change may be 
brought about by keeping resistance to change 
low while increasing pressure for change. 
Abrupt change may be brought about by 
increasing resistance to change before pressure 
for change becomes very great" (p. 38). 

While many bifurcation models of complex 
adaptive systems thus far remain speculative 
and must await validation, Guastello (e.g., 1991, 
1995) has employed catastrophe models exten- 
sively in his empirical studies of the workplace. 
In an investigation of accident incidence among 
a sample of transit operators, Guastello (1991) 
found that a cusp model was superior to a linear 
model in fitting the data provided by the 
participants' survey responses. Transit hazards, 
such as violent passengers or riders who needed 
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to be reprimanded for rule infractions, operated 
as the asymmetry control; the bifurcation 
control included social stressors like job insecu- 
rity and role conflicts. Under conditions of high 
stress, relative safety abruptly changed to 
accident occurrence when transit hazards reach 
a critical threshold. 

In a related investigation with the same 
sample of workers, Guastello (1992) determined 
that cusp models were also more effective than 
linear alternatives in explaining patterns of 
specific stress-related illnesses (e.g., nervous- 
ness, insomnia, high blood pressure, carpal 
tunnel syndrome). However, the relevant asym- 
metry and bifurcation variables differed, to 
some degree, from one illness to the next. In the 
case of ulcers, for example, age, experience, and 
physical stress were the asymmetry controls 
while social stressors were the bifurcation 
controls. For high blood pressure, on the other 
hand, anxiety was more important than physical 
stress as an asymmetry variable, and danger 
replaced social stress as the primary bifurcation 
variable. 

Hysteresis 

An important identifying characteristic of all 
cusp catastrophes and many other forms of CAS 
bifurcation is hysteresis (e.g., Nicolis & 
Prigogine, 1989). A hysteresis effect appears in a 
dynamical system if the precise point of 
bifurcation along the control parameter (or 
asymmetry variable) depends on the direction of 
change in that parameter. In this situation, the 
system's history influences its current state. That 
is, for the same control parameter value, a 
system can be in either of two states depending 
on whether the control parameter was increasing 
or decreasing. Returning to the example of a 
horse's gait, with increasing speed a point is 
reached at which the animal abruptly shifts from 
a trot to a gallop. When the horse later slows 
down, however, the speed at which it returns to a 
trot may be slower than the shift point where the 
earlier discontinuity occurred. Similarly, under 
controlled conditions, the temperature at which 
water turns to vapor can be above the tempera- 
ture at which the vapor returns to liquid form. 

Each of the cusp catastrophes described 
earlier manifests hysteresis to some degree. For 
example, once Tesser and Achee's (1994) couple 
have firmly established their romantic involve- 

ment, it may require a larger decline in attaction 
before their dating behavior diminishes apprecia- 
bly. That is, for the same range of attraction, 
romantic activity will be higher during the 
dissolution of the relationship than it was during 
its creation. In regard to attitude formation 
(Latane & Nowak, 1994), once an individual has 
established a strong opinion regarding an issue 
of personal importance, he or she is likely to 
cling to that position even when later confronted 
with considerable negatively valenced informa- 
tion. In other words, the very same information 
on an issue may produce either a favorable or an 
unfavorable attitude, depending on how it 
compares in valence with previous information. 
Again, history matters. 

Similarly, organizational practice may display 
hysteretic effects (Bigelow, 1982). If resistance 
to change is strong but pressure to change has 
been sufficient to produce a discontinuous 
alteration in practice, that new mode of opera- 
tion will likely persist even if significant 
pressures to return to the old ways develop. 
Finally, once workplace accidents or stress- 
related illnesses have been triggered, they may 
remain high despite successful efforts at moder- 
ating their precipitating influences (Guastello, 
1991, 1992). 

Self-Organized Criticality and the Edge 
of Chaos 

The transition or bifurcation regions in which 
the dynamic instabilities of a CAS are greatest 
have received particular attention from some 
theorists and investigators. Bak and his col- 
leagues (Bak, 1994; Bak &Chen ,  1991; Bak, 
Tang, & Wiesenfeld, 1988), for example, have 
proposed that the self-organization process itself 
is governed by a principle called self-organized 
criticality. Self-organized criticality refers to the 
tendency of a large dynamical system to 
naturally evolve to a critical state between order 
and disorder, often also called the edge of chaos 
(e.g., Packard, 1988). The global features of 
such a system cannot be understood through an 
analysis of individual parts; at the point of 
self-criticality, either a large or small event can 
trigger a chain reaction of unpredictable magni- 
tude (e.g., earthquakes, ecosystem extinctions, 
or financial market collapses). 

The classic example of self-organized critical- 
ity is a pile of sand. As sand is slowly added 
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from above, the pile's height increases until the 
slope reaches a critical state. At that point, any 
additional grains of sand will cause an ava- 
lanche of unpredictable magnitude. In fact, the 
distribution of sandslides is best described by a 
power law, with a small slide far more likely 
than a large one. But perhaps most intriguing is 
the premise that the same conditions can 
produce dramatically different outcomes on 
different occasions. What remains relatively 
constant, however, is the critical state that the 
pile must return to before the next avalanche 
will occur. Bak (1994) also notes that once the 
pile is poised at the critical state, any analysis 
based on individual grains of sand ceases to be 
useful. At that point, the pile of sand must be 
viewed as a whole because even grains consider- 
able distances apart are linked through an 
elaborate network. 

Scheinkman and Woodford (1994) have 
applied the notion of self-organized criticality to 
the observed instability of economic aggregates. 
They propose that the significantly nonlinear 
and strongly localized nature of the interactions 
between different parts of the economy prevents 
the law of large numbers from dampening 
variations in demand or production. Because 
small changes in a particular unit's level of 
production can have large and nonuniform 
effects on the economic activities of its immedi- 
ate neighbors, inventory dynamics can propa- 
gate across time and between sectors in a large 
economy. Assuming such a pattern of linkages 
and potential chain reactions, the authors 
concluded that final-goods demand (treated as 
an exogenous shock) can cause a production 
avalanche of any size, entirely unrelated to the 
size of the system. 

Bak and Chen (1991) also suggested a more 
speculative example of self-organized critical- 
ity: "Throughout history, wars and peaceful 
interactions might have left the world in a 
critical state in which conflicts and social unrest 
spread like avalanches" (p. 53). In a similar 
vein, S hermer (1995) has offered a metaphorical 
analogy in the rise and fall of various social 
movements. Suggesting that "certain historical 
phenomena repeat themselves, not in specifics 
but in universals" (p. 77), he proposed that the 
witch crazes of past centuries have equivalents 
in modem day mass hysterias, moral panics, 
alien abduction claims, and fears of Satanic 
cults. Shermer has noted that the social condi- 

tions underlying the emergence of all these 
phenomena have much in common (e.g., a 
feeling of loss of personal control and responsi- 
bility), and that each movement propagates 
through a rapidly growing network of informa- 
tion exchange. Once the critical peak has been 
reached, however, even a small event (e.g., the 
demonstrated falsity of one claim) reverberates 
through the system causing the collapse of the 
movement and a loss of interest by the general 
public. 

Other investigators have focused on the edge 
of chaos notion, seeking theoretical or empirical 
support for the view that complex adaptive 
systems evolve toward a critical state between 
order and disorder. Langton (1990, 1992, 1995), 
for example, has proposed that this phase 
transition area is where a system has maximum 
adaptability and maximum effective information 
exchange. In the ordered regime, the system is 
too rigid and both information exchange among 
components and responsiveness to a changing 
environment are therefore limited. In the disor- 
dered regime, on the other hand, the system is 
too turbulent and its connections are too 
disorganized to allow it to function at peak 
effectiveness. 

Langton further contends that a CAS will 
actually "slow down" when it reaches the phase 
transition state. Rather than moving quickly 
through this region, the system clings to the 
edge until pushed in one direction or the other. 
Indeed Kelly (1994) has proposed that in order 
to maintain itself in this poised state, the CAS 
will engage in a self-tuning process character- 
ized by increasingly complex strategies and 
feedback mechanisms. Similarly, Kelso (1995) 
explained that complex adaptive systems often 
hover near bifurcation points. He suggests that 
the brain itself "is poised on the brink of 
instability where it can switch flexibly and 
quickly. By living near criticality, the brain is 
able to anticipate the future, not simply react to 
the present" (p. 26). 

Using computer simulations, Kauffman (1991, 
1993, 1995) has found that selection processes 
can drive simple Boolean networks (such as 
cellular automata) to this edge of chaos. He 
suggests that the same phenomenon likely 
operates with actual genetic regulatory systems. 
Along the same lines, Schuster (1994) reports 
that RNA viruses, faced with rapidly changing 
environments, do in fact appear to evolve near 
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the edge of disorder. For such viruses, stagna- 
tion enables the host organism to mount 
effective defenses, whereas runaway mutation 
can prove self-destructive to the virus. More 
speculatively, Kauffman (1995) raises the possi- 
bility that democratic forms of govemment 
provide the best opportunity to resolve difficult 
problems among conflicting interests because 
pluralism facilitates movement toward the phase 
transition region where optimal compromise 
solutions can be found. 

A Note on Chaos 

In some complex adaptive systems, com- 
pletely deterministic rules may nevertheless 
lead to unpredictable outcomes. This paradoxi- 
cal phenomenon, initially identified in weather 
patterns and turbulent fluid flow, is caused by 
sensitive dependence on initial conditions and is 
the particular focus of chaos theory (e.g., Baker 
& Gollub, 1990; Cambel, 1993; Crutchfield, 
Farmer, Packard, & Shaw, 1986; Gleick, 1987; 
Stewart, 1989). With chaotic behavior, exceed- 
ingly small, perhaps even unmeasurable differ- 
ences in parameter values at one point in time 
lead to large and ultimately unpredictable 
differences in observed behavior at some later 
point in the future. 

The classic summarization of this particular 
disproportionality between cause and effect is 
the so-called butterfly effect (Lorenz, 1993), 
which suggests, for example, that the flap of a 
butterfly's wings in Brazil can cause a tornado in 
Texas. Merry (1995) provides two additional 
hypothetical instances. First, neighboring na- 
tions developing under virtually identical eco- 
nomic and political conditions may subse- 
quently display dramatically different national 
cultures. Second, two brothers subjected to the 
same poverty-stricken childhood in an inner-city 
ghetto may grow up to be quite different from 
each other--one a renowned scientist and the 
other an incarcerated criminal. 

Sensitivity to initial conditions results from 
the inherently nonlinear nature of the equations 
underlying chaotic processes. Repeated itera- 
tions, in which values from calculations at 
preceding time points are "fed back" into the 
system of equations to determine the values at 
the next time point, lead to a dramatic 
amplification in differences as the time horizon 
lengthens. The ultimate result is the appearance 

of randomness in a system governed by 
deterministic rules. 

Crutchfield (1994) describes this phenom- 
enon in the following way: 

Where in the determinism did the randomness come 
from? The answer is that the effective dynamic, which 
maps from initial conditions to states at a later time, 
becomes so complicated that an observer can neither 
measure the system accurately enough nor compute 
with sufficient power to predict the future behavior 
when given an initial condition. (p. 516) 

Casti (1994) also points out that even when 
observing quite simple nonlinear behavior, it 
may still be impossible to know the system's 
initial state precisely. And to further complicate 
matters, investigators note that chaotic systems 
may exhibit nonchaotic behavior over much of 
their domain (Gregersen & Sailer, 1993; Nicolis 
& Prigogine, 1989). 

Inherent in the process underlying chaotic 
behavior, however, lies the opportunity for 
surprisingly accurate short-term predictions. 
That is, there may be pockets of predictability 
even though long-term prediction is unattain- 
able. Kelly (1994) summarizes the situation this 
way: "The character of chaos carries both good 
news and bad news. The bad news is that very 
little, if anything, is predictable far into the 
future. The good news is that in the short term, 
more may be more predictable than it first 
seems" (p. 424). Mandell and Selz (1994) also 
note that even chaotic behavior may exhibit 
stability when viewed from the perspective of 
deep characteristics. For example, they describe 
the circumstances of a compulsive hand-washer. 
Although it may be impossible to anticipate 
precisely when he or she will engage in this 
intermittent behavior, one can nevertheless be 
confident that washing will occur with higher- 
than-normal frquency over any given period of 
time. 

H o w  the CAS Responds 
to Its Envi ronment  

Although the focus thus far has been on the 
internal structure, dynamics, and self-organiza- 
tional tendencies of CAS, these systems exist in 
a larger environment that typically confronts 
them with a multitude of challenges, including 
the actions of other coevolving complex adap- 
tive systems. The survival or success of the 
CAS, then, often depends on its capacity to 
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effectively modify goal-oriented behavior in 
response to a changing environment. The 
adaptations are not necessarily passive; in many 
cases the system responds actively with behav- 
iors designed to influence and perhaps even 
control the environment (Hubler & Pines, 1994). 
In this light, Huberman and Hogg (1986) 
observe that an important measure of adaptabil- 
ity is how well a system can function under 
varying conditions with only minimal changes 
in its structure. 

Fitness Landscapes 

Several investigators have found the concept 
of fitness landscapes useful in analyzing the 
adaptation and coevolution of complex adaptive 
systems (e.g., Gell-Mann, 1994b; Kauffman, 
1993; Wright, 1986). In this metaphor, the agent 
is pictured as moving about on an imaginary 
topographical map. The landscape typically 
includes hills and valleys of varying degree, and 
the tallest peak represents the site of the agent's 
optimal fitness. Alternatively, the fitness land- 
scape can be viewed upside-down; from this 
perspective, optimal fitness lies at the bottom of 
the deepest basin. In either case, it is important 
to note that not all agents climb identical 
landscapes, and that the landscape itself can 
change. In short, complex adaptive systems 
differ from each other in the paths and obstacles 
to optimization. 

Heylighen and Campbell (1995) have used a 
fitness landscape approach in describing how 
systems evolve through the twin processes of 
variation and selection. Although such evolution 
typically proceeds with small adaptive steps 
gradually leading to higher ground, occasionally 
the transitions temporarily take the system to 
somewhat lower regions. If  these latter locations 
are too low, the system risks elimination. But 
without some nonadaptive excursions, the CAS 
is likely to get "stuck" on a local fitness 
maximum and therefore never attain the more 
desirable global maximum. In other words, 
evolution would cease because there would be 
no direct path to increased fitness. 

Kollman, Miller, and Page (1992, 1995) 
document just such risks in their computer 
simulations of electoral landscapes in which 
political parties are adaptive agents competing 
with each other for votes. In particular, they 
offer an explanation for why a challenging party 

may fail to defeat an incumbent. Lacking full 
information about the preferences of the entire 
population, the challenger must rely on polls of 
randomly selected voters to refine its platform. 
This iterative process may result in the party 
becoming stuck on a local peak, committed to a 
platform that, although superior to all neighbor- 
ing platforms, nevertheless lacks the broad- 
based appeal necessary for victory. In short, the 
challenger's search method can lead it to think it 
has identified a winning platform when, in fact, 
it has not. In a similar manner, it is common- 
place for a person undertaking psychotherapy to 
report feeling stuck in a particular life situation; 
in some instances, this experience likely results 
from adaptations that have "trapped" the 
individual on a local fitness peak from which 
higher peaks are not directly accessible. 

This landscape perspective demonstrates how 
a complex adaptive system can sometimes 
benefit from errors or random behaviors if such 
actions inadvertently displace the agent from a 
local peak, thereby increasing the likelihood that 
the agent will reach the landscape's global 
maximum (Gell-Mann, 1994b). In fact, Kelly 
(1994, p. 470) views "honor your errors" as a 
guiding commandment for effective adaptation. 
He advises that by nurturing small failures, a 
system can make large failures less probable. 
That is, small cracks can prevent larger frac- 
tures. Indeed, errors are often renamed innova- 
tions when they lead to a better problem solution 
or a more adaptive path. Furthermore, tolerating 
minor mistakes instead of trying to correct or 
eliminate them also frees a system to focus on 
more important and more urgent functions. 

Of course, system errors or random behaviors 
more often disrupt or prevent adaptive progress, 
especially when they are excessive in frequency 
or magnitude. Many small steps toward a fitness 
peak can be quickly undone by large, .misdi- 
rected movements (e.g., GeU-Mann, 1994b). 
Especially in a constant, unchanging environ- 
ment, such actions can prevent an agent from 
even maintaining fitness levels already achieved. 
External "noise" from the environment itself 
can also contribute to a system's failure to 
successfully adapt. A noisy environment not 
only complicates the system's task of sorting 
usable information from random signals, but it 
can also disrupt efforts to focus attention and 
effectively respond to any particular input 
(Hubler & Pines, 1994). Nor can the impact of a 
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sudden, catastrophic environmental event be 
overlooked. As Gould (1989) points out, such 
accidents permanently alter the course of 
history. Even the most fit can be undone by a 
random bolt of lightning. 

Whenever the environment or landscape is 
populated by multiple adaptive entities, coevolu- 
tionary forces make the dynamics of adaptation 
increasingly complex. Indeed, the combined 
activities of the individual agents create a larger 
CAS that incorporates all of them (e.g., 
Gell-Mann, 1994a). In order to reach their own 
respective fitness peaks, these coevolving agents 
must simultaneously adapt to one another. As a 
result, their optima are no longer fixed and 
independent; the agents experience their shared 
environment as a landscape that constantly 
shifts and deforms (e.g., Kauffman, 1993, 1995; 
Kauffman & Johnsen, 1992; Kollman, Miller, & 
Page, 1995). 

Internal Models 

Many theorists and researchers have exam- 
ined the basic mechanisms that some complex 
adaptive systems, such as human beings, make 
use of in formulating actions intended to yield 
positive consequences and greater fitness. Gell- 
Mann (1994a, 1994b, 1995), for example, has 
explained that a complex adaptive system 
actively searches for regularities in its own 
behavior and in the environment and then 
compresses incoming information into an orga- 
nized collection of schemata. The use of 
particular schemata in actual situations produces 
consequences that, by means of feedback loops, 
serve as input information for the modification 
of the schemata. This competitive cycle ulti- 
mately leads to adaptation and learning. Gell- 
Mann has pointed out, however, that this process 
is imperfect and that a maladaptive schema can 
persist uncorrected for a long time. For example, 
a person may perceive regularities where in fact 
there is only randomness (e.g., superstition), or 
vice versa (e.g., denial). In this regard, Goertzel 
(1994) likens belief systems to immune systems, 
suggesting that a set of faulty but mutually 
supporting beliefs can act to "protect" an 
individual from the inputs of external reality. 

Holland (e.g., 1992, 1994, 1995) provides a 
particularly detailed and rigorous analysis of the 
processes that govern CAS responses to the 
environment. From his perspective, the system 

uses a hierarchical set of roles--from the most 
global to the very specific--to anticipate the 
consequences of its own actions. If this look- 
ahead indicates negative consequences on the 
horizon, the system can alter its current actions 
accordingly. However, this internal model is a 
truly effective predictive mechanism only if the 
system can analyze a situation and execute the 
appropriate rules more quickly than the environ- 
ment changes--an especially challenging task 
in coevolutionary environments. 

Holland views the capacity to modify an 
intemal model as critical to the complex 
adaptive system's effective functioning. Only in 
a perpetually static environment can the same 
rules always work, and even then fine tuning 
may be advantageous. Furthermore, most CAS 
derive their rules from only a limited sampling 
of the environment. As with Gell-Mann's 
schemata, Holland's rules undergo constant 
review by the system, competing with each 
other in an evolutionary process designed to 
maximize the CAS's adaptability and chances of 
survival. The complex adaptive system also 
forms plausible new rules from the component 
parts of tested rules. This process of recombina- 
tion is a crucial element in the system's delicate 
balancing of exploitation and exploration. Ex- 
ploitation here refers to the use of actions that 
have produced beneficial outcomes in the past. 
Exploration, on the other hand, refers to 
experimentation with new behaviors; these 
behaviors may prove to be extremely valuable 
or quite costly. Although there are attendant 
risks, without such exploration the CAS will 
eventually encounter a situation for which it has 
no appropriate or effective response. 

Kauffman (1994) has proposed a speculative 
framework for how the intemal models of 
interacting individuals coevolve. Consistent 
with Holland's focus on look-ahead, Kanffman's 
central premise is that adaptive agents strive to 
maximize the accuracy of their predictions 
about each other. Through ongoing interactions, 
each agent develops a finite model of the other 
agent that will sooner or later prove inaccurate. 
When a particular prediction fails, the individual 
who was wrong alters his or her operative 
hypotheses about the other agent. This cognitive 
change and the behavioral modifications coupled 
with it are likely, in turn, to create a failure in the 
second agent's internal model. When this 
second agent then modifies his or her own 
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preferred hypotheses and behavior, the first 
agent will shortly thereafter discover a new 
failure in his or her own most recent internal 
model. And so the cycle continues. 

Kauffman hypothesizes that this coevolution- 
ary process produces dynamical changes in the 
complexity of each agent's internal model. 
Following a disconfirmation, an agent will 
generally adopt a simpler, more general model 
that is less likely to be wrong, but also is less 
useful for precise predictions. As the agent 
gradually accumulates reliable data from new 
interactions, he or she will find it advantageous 
to once again develop a more detailed internal 
model of the second agent's behavior. This 
process of adding complexity continues until the 
first agent is once again confronted with a 
disconfirmation. In short, Kauffman suggests 
that a coevolutionary agent's internal model is 
driven back toward a self-organized critical 
state, poised at the edge of chaos, whenever it 
strays too far away. 

Coevolutionary Relationships 

Coevolution among CAS takes many differ- 
ent forms; among the most common is the 
predator-prey relationship. In nature, these 
pairings of species often display either a steady 
equilibrium or an oscillating Lotka-Volterra 
cycle such as that observed between the 
Canadian lynx and the snowshoe hare (Sig- 
mund, 1993). In this latter case, an initial 
increase in the number of predators leads to a 
decline in the availability of prey; this constraint 
on food supply then reduces the number of 
predators that can survive, thereby enabling the 
prey population to grow once again. The 
increased availability of prey, however, will 
precipitate a rise in the predator population, and 
SO on .  

Nowak and Lewenstein (1994) have sug- 
gested that this same cyclical pattern may fit the 
system dynamics of pickpockets and naive 
victims (i.e., those who fail to adequately protect 
themselves from theft) in contemporary society. 
Such a model would work in the following way: 
With many pickpockets at work, the number of 
people willing to walk the streets unprotected 
would quickly diminish. This decline would 
then curb the profitability of picking pockets, 
forcing many to find alternative means of 
financial support. As the pickpockets vanish, 

however, potential victims would become less 
vigilant, which would lead to a rekindling of 
opportunities for would-be thieves. In short, as 
each group alternately becomes too successful 
in relation to the other, the seeds are planted for 
its own at least temporary demise. 

Baron, Amazeen, and Beek (1994) have 
proposed that a similar coupling may describe 
majority-minority relations. If the majority 
grows too large (and the minority too small), it 
may cease to adequately monitor the quality of 
its functioning (e.g., values and goals) and 
therefore suffer the loss of disenchanted support- 
ers. If  the resulting increase in the size of the 
minority is too dramatic, however, the overall 
group cohesiveness can be shattered--a trou- 
bling consequence for even the minority support- 
ers themselves. Indeed, a further shift of 
allegiances or splintering of the group may 
occur before the minority is able to achieve 
majority status. Because healthy group function- 
ing may therefore depend on a certain ratio of 
majority-to-minority sizes, the authors de- 
scribed the challenge as follows: 

At issue here is getting outgroup strength to be high 
enough to increase ingroup cohesiveness given that if 
outgroup pressure is too weak, internal cohesiveness 
may suffer. On the other hand, if outgroups grow too 
powerful, internal cohesion, instead of increasing, may 
jump in the opposite direction, with members leaving 
the group. (p. 136) 

In contrast to the cycling described above, 
competition among species or complex adaptive 
systems can sometimes lead to a coevolutionary 
"arms race." This phenomenon is epitomized 
by van Valen's (1973) Red Queen hypothesis, 
which refers to any situation in which continu- 
ing adaptation is necessary just to maintain 
relative fitness. Heylighen and Campbell (1995) 
emphasize that such an arms race is most likely 
between similar systems that depend on the 
same resources; the outcome can be detrimental 
to all parties involved. They offer as an example 
the forest trees that grow ever taller--and 
increasingly vulnerable--as they compete with 
each other for sunlight. 

Similar coevolutionary arms races can also be 
seen in human society. Saperstein (1990), for 
example, has described the commonplace esca- 
lation of weapons development and deployment 
between hostile nations. Each nation's security 
policy decisions are based on an evaluation of 
the armament stocks of their opponents. The 
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rapid response capabilities provided by strategic 
nuclear weapons only serve to tighten these 
interconnections. Saperstein concluded that "One 
cannot be confident of 'pushing' an opponent 
safely around the 'policy field' when there may 
be a precipice in that field over which each 
might drag the other" (p. 179). Mayer-Kress 
(1990), in analyzing his own simulation models, 
added that the arms race between nations can be 
precipitated by even a small change in one 
nation's response to a perceived threat from 
another. 

Fish (1994) speculated that the arms race 
phenomenon is also central to the coevolution- 
ary battle between government forces and the 
purveyors of illegal drugs: 

When the police get more firepower, the drug lords 
escalate their armaments. Greater ingenuity in tracking 
illegal funds is met by improved methods of hiding 
them. Stiffer sentences for adult drug dealers lead to the 
recruitment of children who are not subject to those 
penalties. (p. 15) 

Fish has also maintained that the symmetrical 
escalation has led to both greater violence and 
greater drug abuse. It is interesting to note Fish's 
expectation that any change in drug policy will 
likely be discontinuous--the kind of sudden 
alteration that typifies a bifurcation point. 

The computer simulations of investigators 
outside the social science arena also provide 
pertinent insights into the coevolutionary dynam- 
ics of interacting CAS. Ray (1992, 1994), for 
example, created an entire virtual computer 
world called Tierra and initially populated it 
with self-replicating machine-code creatures 
that competed for limited CPU time and 
memory space. Tierra also included a reaper 
function to cull flawed algorithms from the 
"soup" as well as a mutation function to mimic 
biological evolution. Over time, metabolic 
parasites capable of using the procedure codes 
from other creatures appeared and multiplied. 
This led to a decline in the original host 
population, and then a significant drop in the 
number of these parasites. After a subsequent 
rebound in the size of the host population, 
parasites proliferated once again. 

At the same time this cycle was unfolding in 
Ray's study, an evolutionary arms race escalated 
in which host creatures developed immunity to 
the parasitic invaders, then the parasites found 
ways to circumvent the immunity, and so on. 
After the succession of many generations, Ray 

discovered even more complex creatures such as 
social hyper-parasites that could self-replicate 
only when together in groups, and cheaters that 
would infiltrate these social groups and steal the 
exchanges between them. It is of interest here 
that Hillis (1992), in his own work with sorting 
networks, discovered that optimization proce- 
dures were actually more effective and more 
efficient when coevolving parasitic codes were 
included in the programming environment. By 
uncovering and exploiting any weaknesses, the 
parasites pushed the system away from local 
maxima and toward the optimal global solution 
instead. 

Similarly, Holland (1994, 1995) has devel- 
oped his ECHO computer model to simulate the 
flow of resources among reproducing artificial 
agents. The world in which these agents move is 
a connected array of sites, each of which 
provides variable amounts of renewable re- 
sources. An agent must obtain a sufficient 
reservoir of such resources in order for it to 
successfully self-replicate. In addition, the 
agents also directly interact and exchange 
resources with each other. They vary, however, 
in their abilities to force the outcome of an 
interaction, resist another agent's own efforts, 
and organize themselves into larger, more 
complex meta-agents. The ECHO system speci- 
fications can be designed to study phenomena 
such as interactions in natural ecosystems, the 
evolution of organizations, economic activity in 
modern societies, and immune system re- 
sponses. 

Finally, Hubler and Pines (1994) have con- 
ducted numerical experiments investigating the 
interaction patterns of CAS dyads. In their 
simulations, each agent's primary goal is to 
discover regularities in their shared environ- 
ment; meanwhile, even without direct communi- 
cation, the paired agents can both enhance and 
diminish each other's predictive abilities. De- 
pending primarily on the combinations of active 
versus passive adaptation employed by the 
agents, the researchers uncovered a variety of 
coevolutionary dynamics. For example, a leader- 
follower configuration at the edge of chaos 
tended to be the most stable paired arrangement. 
Hubler and Pines also found that active 
adaptation was preferable to passive adaptation 
under most circumstances, and that the agent 
with the more complicated strategy was gener- 
ally victorious in any direct competition. 
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Game Theory 

Analyses of coevolutionary behavior in com- 
plex adaptive systems often rely directly or 
indirectly on game theory principles, which can 
generally be applied to any potential conflict 
situation where the outcome is determined by 
the participants' choices. Formulated initially by 
von Neumann and Morgenstern (1944) as a 
model for economic behavior, game theory has 
proven useful in many other contexts, including 
the study of cooperation (e.g., Axelrod, 1984), 
escalation (e.g., Shubik, 1971), and evolution 
(e.g., Maynard-Smith, 1982). The most well 
known of these games is the Prisoner's Di- 
lemma, although others such as Chicken, Stag 
Hunt, and Deadlock can also be viewed as 
building blocks of complicated coevolutionary 
interactions (Kelly, 1994; Poundstone, 1992). 

An important distinction made by game 
theorists is whether the situation under consider- 
ation is a zero-sum or non-zero-sum game. The 
former describes a strictly competitive situation 
in which the combined total payoffs for the 
players are fixed. That is, one agent can benefit 
only at the expense of another agent. In contrast, 
a non-zero-sum game can provide positive or 
negative outcomes to all players depending on 
their collective actions (e.g., Luce & Raiffa, 
1957). In the classic Prisoner's Dilemma, for 
example, each agent's best individual outcome 
is obtained by defecting, but their best combined 
outcome requires mutual cooperation. Interest- 
ingly, it is not unusual for agents to misperceive 
their payoff matrix; they often behave competi- 
tively when cooperation would be more profit- 
able for all (Axelrod, 1984). 

Of particular relevance to coevolving CAS 
are situations that involve repeated interactions 
over time--that is, iterated games. When agents 
recognize that they may have multiple encoun- 
ters (perhaps even indefinitely) with each other, 
their strategies often become more complicated 
as memory of past outcomes and anticipation of 
future contact affect current decisions (e.g., 
Axelrod, 1984; Poundstone, 1992; Sigmund, 
1993). For example, Lindgren (1992) designed 
an elaborate computer simulation of an iterated 
Prisoner's Dilemma game in order to study 
coevolution in an artificial population. He 
observed a variety of evolutionary phenomena, 
including "periods of stasis, punctuated equilib- 
ria, large extinctions, coevolutions of mutual- 

ism, and evolutionary stable strategies" (p. 295). 
Lindgren also discovered that agents were able 
to limit how successfully competitors could tune 
their strategies by including occasional mistakes 
or random choices as components of their own 
strategies. 

Similarly, Marks (1992) has analyzed politi- 
cal change in authoritarian systems from a game 
theory perspective; his particular focus is on the 
strategic interactions that characterize mass 
protest by the political opposition against the 
ruling elite. Each of these coevolving groups can 
adopt either of two policies: the ruling elite can 
choose to tolerate or suppress its opponents and 
the political opposition can choose to operate 
within the system or challenge it. However, the 
situation is further complicated by factions 
within the ruling elite and, because mass protest 
requires coordination among a large number of 
individuals, by the decisions of each opposition 
member. As a punitive measure against a 
suppressing ruling elite, a public protest will 
have the desired impact only if it is of sufficient 
size; otherwise, those who protest may be worse 
off than the nonprotesters. 

The system dynamics, then, share some 
features with other collective action problems. 
Here, the eventual number of protesters depends 
on the potential participants' own expectations 
about whether or not a critical mass will be 
achieved. Furthermore, the elite regime's ac- 
tions (e.g., mobilizing additional troops) contrib- 
ute to determining how many of the political 
opposition are necessary to constitute a critical 
mass. For all involved, information about 
intentions is crucial. For example, if the ruling 
elite should decide to adopt an attitude of 
toleration rather than suppression, the implica- 
tions can be profound. As Marks (1992) 
explains: "The critical task for the political 
opposition in this scenario is to limit protest 
despite the penchant of individual oppositionists 
to protest previously bottled-up anger, griev- 
ances, and demands" (p. 411). That is, the 
leadership must now reverse course and encour- 
age a policy of working within the system for 
continued change. Indeed, mass protest at this 
juncture could be self-destructive if it induces 
the ruling elite to reinstitute a policy of 
suppression. 

As a final illustration, Messick and Liebrand 
(1995) have employed the Prisoner's Dilemma 
to examine changes in the frequency of coop- 
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eration over time. Using computer simulations, 
they created artificial populations in which all of 
the agents relied on the same strategy in 
deciding whether to cooperate or defect. Three 
different decision heuristics were explored: 
tit-for-tat, in which the agent adopts the choice 
made by the neighbor with which it most 
recently interacted; win-stay~lose-change, in 
which the agent compares its most recent 
outcome with those of its neighbors and then 
maintains its choice if the comparison is 
favorable or switches if the comparison is 
unfavorable; and win-cooperate/lose-defect, in 
which the agent cooperates if its previous 
outcome was favorable in comparison to its 
neighbors and defects if social comparison 
revealed the previous payoff to be unfavorable. 
Under all these conditions, the agent's decision 
heuristic was applied successively to whichever 
of its neighbors (from among the eight surround- 
ing cells of a larger grid) was randomly selected 
for its next interaction. 

In summarizing their many findings, Messick 
and Liebrand (1995) emphasized that significant 
levels of cooperation persisted over t ime- -  
regardless of which choice strategy was homoge- 
neously applied---as long as the overall popula- 
tion size exceeded a threshold value. In addition 
to the importance of group size, they found that 
the particular methods used in evaluating 
outcomes also made qualitative differences in 
the dynamics of cooperation. In describing the 
cooperation as an emergent social phenomenon 
that cannot be adequately explained on the basis 
of individual actions, Messick and Liebrand 
concluded that "simple behavioral rules, rules 
instantiating the most rudimentary forms of 
adaptive social interaction, can lead to unex- 
pected global patterns in large groups" (p. 144). 

Implicat ions for Behavioral  and Social 
Science Research 

This overview of complex adaptive systems 
has covered considerable ground. Many con- 
cepts have been presented, and numerous 
examples have been provided in an effort to 
give the reader a broad-based view of CAS 
applications in the behavioral and social sci- 
ences. In the process of answering some 
questions, other concems have undoubtedly 
been raised. As noted in the introduction, given 
current knowledge, a conclusive evaluation of 

the merits and shortcomings of the CAS 
perspective will ultimately require an interdisci- 
plinary dialogue. In this final section, several of 
the central issues are highlighted. 

By way of a brief review, the key tenets of the 
CAS perspective are summarized well by each 
word in the term complex adaptive system. 
Complex conveys many attributes, the clearest 
of which may be the nonlinear nature of the 
world around us. According to complexity 
theory, small events (such as someone's slightly 
different idea) can have dramatic effects, and 
seemingly large events (such as a long-awaited 
conference of world leaders) can have no 
discernible impact at all. Simple processes (like 
a disagreement among family members) can 
mushroom out of control; intricate or massive 
structures (for example, the former Soviet 
empire) can collapse virtually overnight. Abrupt 
change (such as a calm neighborhood trans- 
formed into a riot-tom community) is often the 
norm rather than the exception. 

Adaptive reflects the perspective's focus on 
the change and evolution that characterize 
individuals, groups, and societies. Equilibrium 
states (for example, group consensus on an 
issue) are viewed as transient because they are 
repeatedly disrupted by both internal phenom- 
ena (such as one member's increasing animosity 
toward another) and external influences (such as 
new information about a competing group's 
latest strategy). Periods of disorder and instabil- 
ity (for example, the turmoil of adolescence) are 
recognized as natural and necessary stages on 
the path toward greater self-organization. The 
search for optimal fitness, however, often 
includes frequent detours and shifting terrain as 
other individuals or groups struggle to adapt on 
the same landscape. 

The final word system emphasizes intercon- 
nections. A CAS can be readily apparent (as in 
the case of a close-knit family), or shrouded and 
concealed (as with the relationships among 
distant nations). As a result of the dynamical 
interactions among the component parts of the 
system, collective behavior emerges (such as 
political revolt) and often catches people by 
surprise--no matter how well we understand the 
individual elements separately. Therefore, policy 
measures (for example, economic tariffs, manda- 
tory drug testing, or parental limits on sibling 
disputes) frequently have unintended conse- 
quences as they work their way through a 
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network of intermediaries, each of which 
contributes its own fingerprint to the message it 
transmits. Simple cause-and-effect relationships 
evaporate, leaving instead patterns and regulari- 
ties to decipher. 

The behavioral or social scientist faces many 
challenges in translating complexity theory 
principles, originally formulated in the natural 
sciences, to areas such as psychology, sociology, 
economics, or political science. Most clearly, 
people have characteristics that make them 
different from purely chemical or physical 
systems. For example, although the evolution of 
human social systems may at times be mis- 
guided, it is rarely blind. Our self-organizing 
enterprises are distinctive because they typically 
involve attempts to intelligently plan structures 
(e.g., Weidlich & Haag, 1983). This aspect alone 
contrasts sharply with the unknowing move- 
ments of fluids or gases. Furthermore, even if 
individuals are generally limited in their ration- 
ality and not always intentional in their actions, 
it remains problematic to adequately control or 
eliminate the influence of their awareness and 
perceptions. Hinterberger (1994) summarizes 
the situation in the following way: "All physical 
and biological laws and processes apply to 
social processes but special aspects of human 
abilities, human culture and social life require a 
broader theory that also allows us to explain the 
specialties based on the specifically human 
ability of active, conscious and intelligent 
decision-making" (p. 38). 

More generally, the individual components 
making up systems in the behavioral and social 
sciences (e.g., people, groups, societies) tend to 
be far more complicated than the corresponding 
components that create systems in the natural 
sciences (e.g., molecules). Indeed, a single 
living organism is a collection of many simpler 
CAS. Additionally, in contrast to physical or 
chemical systems, the interactions among the 
same group of individuals often take a multitude 
of different forms (Weidlich & Haag, 1983). As 
a result of this greater complexity, it can appear 
as if deterministic causal laws do not govern 
social phenomena. Accurate measurement in 
itself can be a significant obstacle for the social 
scientist attempting to develop an explanatory 
model of a complex adaptive system (Nowak, 
Vallacher, & Lewenstein, 1994). 

In a related vein, whereas natural scientists 
direct their efforts toward heightening our 

objective understanding of the world in which 
we live, behavioral and social scientists are 
burdened with the additional expectations of 
both explaining and improving the world(s) we 
create. Loye and Eisler (1987) refer to this as the 
"normative aspect of social theory, or the 
requirement of attention to the systems guidance 
question of ideal developmental forms that must 
be the prime concern of all policy makers" (p. 
56). In the context of complex adaptive systems, 
this mission includes such goals as enhancing 
communication patterns, redressing the inequi- 
table distribution of benefits within a society, 
uncovering peaceful solutions to group or 
international conflicts, and discovering mecha- 
nisms to make organizations and governments 
more responsive and effective. 

In short, the added complexity of CAS in the 
behavioral and social sciences can create serious 
and sometimes intractable modelling problems. 
Indeed, many adherents to the complexity 
paradigm acknowledge that, once outside the 
natural scientist's laboratory, researchers may be 
limited to qualitative analysis. Weidlich and 
Haag (1983), for example, suggest that math- 
ematically accurate and detailed descriptions of 
microlevel processes may be unattainable, 
though they believe significant insights can be 
garnered nonetheless. In this regard, Nowak and 
Lewenstein (1994) see considerable value in 
simply uncovering similarities between specific 
aspects of dynamical systems and human social 
behavior. But at the same time, it is necessary to 
distinguish thorough qualitative analyses--such 
as many of the investigations reported here- -  
from those in which complex systems terminol- 
ogy is used in a merely metaphorical manner. 

It is important not to overlook the intellectual 
hazards associated with developing elegant 
metaphors while forsaking the construction of 
accurate models. A blurring of the two ente- 
prises can inadvertently occur when the CAS 
models of behavioral and social scientists suffer 
from oversimplification. For example, Barton 
(1994) has pointed out that if consequential 
features of a system are ignored in order to make 
the investigator's inquiry and analysis more 
manageable, the resulting model may hold little 
promise for improving understanding. This 
"discontinuity between model and reality" 
(Barton, 1994, p. 10) can be further exacerbated 
by the difficulties or impossibility of testing 
precise hypotheses, which requires that the 
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system under investigation be sufficiently iso- 
lated from the external factors impinging on it 
(Barton, 1994). Echoing this last point, Kelso 
(1995) expresses concern about the paucity of 
actual experimental studies of complex adaptive 
systems: "Little contact with experiment is 
made, and interplay between theory and experi- 
ment, so crucial to the development of science, 
is lacking. Behavior as a source of insight into 
principles of self-organization . . .  is virtually 
ignored" (p. 28). 

But despite obstacles to behavioral and social 
science applications, significant insights rel- 
evant to research design are provided by the 
complexity paradigm. For example, a dynamical 
systems orientation reveals that qualitatively 
different behaviors do not require different 
explanatory mechanisms (Kelso, 1995). In this 
way, periods of linear change and episodes of 
nonlinear discontinuity in a system's evolution 
can both result from the same set of parameters. 
Similarly, the CAS perspective encourages 
investigators to consider the possibility that 
change in a system may be a reflection of its 
internal dynamics alone. Although a sudden 
qualitative transformation in an object of study 
often leads the researcher to suspect that a new 
variable has entered the picture, complex 
systems can exhibit such changes in the absence 
of new or external influences (e.g., Newtson, 
1994; Nowak, Vallacher, & Lewenstein, 1994). 
Paradoxically, then, the CAS approach may 
actually provide simpler explanations for a 
variety of phenomena. 

The complexity perspective also illuminates 
the interplay between the fragility and stability 
that characterizes many of the phenomena 
explored by behavioral and social scientists. On 
the one hand, under certain conditions even a 
small change in a system's parameters can 
produce dramatic effects. According to Holland 
(1995), locating these lever points is essential 
for producing major predictable and directed 
change in the system. On the other hand, within 
different parameter ranges, the same system 
stubbornly refuses to change, and displays a 
constancy that confounds all efforts directed 
toward its alteration (whether measured in time, 
money, or creative energy). In regard to this 
discrepancy, Nowak, Vallacher, and Lewenstein 
(1994) explained that a system's resting state 
equilibrium can range from unstable to super- 
stable. In the former condition, a slight external 

influence can profoundly impact the system; in 
the latter circumstance, the system eventually 
returns to its equilibrium state regardless of the 
outside force's magnitude. 

For the behavioral or social scientist, the 
identification and investigation of CAS can be 
facilitated in several ways. Nowak, Vallacher, 
and Lewenstein (1994) have recommended 
looking for regularities or patterns rather than 
focusing solely on uncovering one-way causal 
links between variables; bidirectional causality, 
in which each variable is simultaneously both a 
cause and an effect, is commonplace in complex 
systems. Within these observed patterns of 
behavior, it may be possible to detect signs of 
nonlinearity, including bifurcations and hyster- 
esis. Such identifications obviously require 
multiple observations over time (e.g., time- 
series analyses). More generally, the mecha- 
nisms underlying a system's organization can be 
clarified both by observing as the system's 
intrinsic dynamics unfold naturally and also by 
deliberately perturbing the system and evaluat- 
ing its response (Nowak, Vallacher, & Lewen- 
stein, 1994). 

In a related manner, Kelso (1995) has stressed 
the importance of focusing on a system's 
instabilities. It is at these critical points that 
changes in patterns of behavior are most readily 
distinguished. Furthemore, such points can offer 
the best opportunity to identify the control 
parameters that are in all likelihood relevant to 
the system's linear behavior as well. More 
generally, Kelso advises that knowledge is 
necessary in three areas in order to understand a 
particular complex adaptive system: (a) the 
parameters that act on the system, (b) the 
individual components that compose the system 
itself, and (c) the behavioral patterns that 
emerge from the interactions among these 
components. 

The effective study of complex adaptive 
systems also requires the use of appropriate 
techniques for data analysis. Important nonlin- 
ear relationships among variables--a hallmark 
of CAS----can go undetected if only traditional 
statistical methods are used (e.g., Barton, 1994). 
As Holland (1995) explained, "Nonlinearities 
mean that our most useful tools for generalizing 
observations into theory--trend analysis, deter- 
mination of equilibria, sample means, and so 
on--are badly blunted" (p. 5). For example, 
critical information can be lost when parameter 
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values are averaged; such an approach often 
disguises or conceals temporal phenomena (e.g., 
cycles) characteristic of complex adaptive sys- 
tems (Nowak, Vallacher, & Lewenstein, 1994). 

Similarly, the traditional cross-sectional study 
is of limited usefulness in analyzing behavioral 
or social systems that evolve over time (e.g., 
Gregersen & Sailer, 1993). Although inherently 
more difficult and expensive, longitudinal stud- 
ies with multiple observation points enable the 
researcher to more realistically capture such a 
system's dynamics. Even with this approach, 
abrupt phase transitions may nevertheless be 
difficult to detect reliably because they typically 
occur within only a narrow band of the system's 
full range of operation (Kruse & Stadler, 1993). 
In a related manner, Gregersen and Sailer (1993) 
have pointed out that the examination of chaotic 
systems can be perplexing because they can 
display ordered behavior over a large part of 
their domain. 

As suggested by the many examples pre- 
sented in this paper, the computer simulation or 
numerical experiment is an especially important 
tool for behavioral and social scientists conduct- 
ing complexity research. Indeed, simulations of 
actual phenomena are far more common than 
traditional experiments in this arena. A large and 
diverse group of investigators have endorsed 
and used the methodology (e.g., Allen, 1982; 
Axelrod, 1986; Glance & Huberman, 1994; 
Holland & Miller, 1991; Kauffman, 1993; 
Mayer-Kress, 1990; Messick & Liebrand, 
1995; Nowak, Vallacher, & Lewenstein, 1994), 
although the simulation approach has its draw- 
backs too. For example, it inevitably puts some 
distance between the researcher and his or her 
subject of inquiry (e.g., Kelso, 1995). Further- 
more, the models on which the simulations are 
based may themselves be faulty or oversimpli- 
fied (e.g., Barton, 1994). Important variables 
may inadvertently be excluded; the relationships 
among parameters may be misspecified. Be- 
cause of these and other potential distortions, 
comparing simulation results to real-world 
behaviors and social patterns is a mandatory 
step in the model-building and testing process. 

It is important to recognize that the inherent 
complexities of the phenomena of interest place 
limits on the methods by which researchers can 
effectively study them. Writing about this issue, 
Holland (1995) stated, "The traditional direct 
bridge between theory and controlled experi- 

ment is all but impossible in this situation. We 
cannot follow the traditional experimental path, 
varying seleqted variables under repeated runs 
while holding\~most variables fixed, because 
controlled restarts are not possible with most 
cas, and because some cas operate over long 
time spans" (p. 160). In a similar manner, many 
other investigators have emphasized that the 
theoretical models applicable to complex adap- 
tive systems are often so complicated that 
computer simulations become necessary be- 
cause even advanced analytical mathematics 
prove insufficient (e.g., Axelrod, 1986; Koll- 
man, Miller, & Page, 1995; Messick & Li- 
ebrand, 1995; Miller, 1995; Nowak, Vallacher, 
& Lewenstein, 1994). 

Another important virtue of computer simula- 
tions is that this methodology forces the 
investigator to carefully and precisely specify a 
model as a preliminary step in the research 
process. The exercise of writing the program 
itself can provide a test of the theory's 
completeness while highlighting any internal 
contradictions (Nowak, Szamrej, & Latane, 
1990). When the simulation is then run, the 
consequences of the specific rules and relation- 
ships among variables can readily be observed. 
Mayer-Kress (1990), for example, pointed out 
that the use of simple computer models can 
uncover "possible counterintuitive consequences 
of decisions that appear to be good solutions at 
the time they are made" (p. 181). 

Several other benefits to the simulation 
approach are detailed by Holland and Miller 
(1991). First, the use of artificial adaptive 
agents compels researchers to clearly specify 
their assumptions and also enables them to 
observe the behavior of their "subjects" step-by- 
step as it unfolds. Second, important parameters 
such as the amount of information available to 
the agents, their expectations, and how quickly 
they learn can be precisely determined and 
systematically modified. Third, the features of 
the environment can also be varied to explore 
alternative scenarios. Finally, and of no small 
significance, the artificial agents' "infinite pa- 
tience and low motivational needs . . .  implies 
that large-scale experiments can be conducted at 
a relatively low cost" (p. 366). 

The complex adaptive systems perspective, 
with its dynamical models and computer- 
intensive research strategies, should not be 
viewed as a panacea for the puzzling and 
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intricate issues with which behavioral and social 
scientists must grapple. Nevertheless, this paper 
documents that complexity theory has already 
generated some important theoretical insights 
and research findings in psychology, sociology, 
economics, and political science. At this point, 
the cumulative evidence appears to confirm the 
legitimacy and potential for the approach; 
additional strides must now be taken both to 
refine the paradigm and to integrate it into the 
mainstream "toolbox" of  researchers in diverse 
disciplines. 

To achieve these next steps, however, broader 
implementation and evaluat ion--by both advo- 
cates and skeptics--are required. In particular, 
metaphors must be distinguished from working 
models and intriguing ideas must be honed into 
testable hypotheses. Furthermore, the statistical 
and computer-based skills necessary for study- 
ing complex adaptive systems must become 
more readily and widely available to interested 
parties. In all likelihood, progress will be most 
effectively accomplished through increased col- 
laboration among researchers with differing 
perspectives and areas of  expertise. 
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